Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 22(4): 360-372, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236939

RESUMO

Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis. IMPLICATIONS: PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.


Assuntos
MicroRNAs , Neoplasias , Canais de Cátion TRPM , Humanos , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/fisiologia , Neoplasias/genética , Microambiente Tumoral , Canais de Cátion TRPM/genética
2.
Am J Respir Cell Mol Biol ; 52(3): 315-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25057895

RESUMO

Cigarette smoke (CS) is the strongest risk factor for emphysema. However, the mechanism of the disease is not clear. One reason is that each puff of CS is a complex mixture of approximately 4,000 chemicals, and it is yet to be known which of these chemical(s) are directly involved in the pathogenesis of lung injury in emphysema. The purpose of this study was to demonstrate that p-benzoquinone (p-BQ) produced in the lungs of CS-exposed guinea pigs is a causative factor for destruction of alveolar cells resulting in emphysema that is prevented by vitamin C. Vitamin C-restricted guinea pigs were subjected to whole-body CS exposure from five Kentucky research cigarettes (3R4F) per day or intramuscular injection of p-BQ in amounts approximately produced in the lung from CS exposure with and without oral supplementation of vitamin C. Progressive exposure of CS or p-BQ treatment caused progressive accumulation of p-BQ in the lung that was accompanied by destruction of alveolar cells and emphysema. The pathogenesis involved was arylation, oxidative stress, inflammation, and apoptosis. Vitamin C (30 mg/kg body weight/d), a potential antagonist of p-BQ, prevented accumulation of p-BQ in the lung and the pathogenesis of emphysema. Our study provides the first proof that inactivation of p-BQ, a causative factor of emphysema in CS-exposed lung, could constitute a novel and effective approach in the prevention of emphysema. We consider that a moderately high dose of vitamin C may be a simple preventive therapy for emphysema in chronic smokers.


Assuntos
Ácido Ascórbico/farmacologia , Benzoquinonas/efeitos adversos , Benzoquinonas/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Fumaça/efeitos adversos , Fumar/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Cobaias , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar/metabolismo
3.
PLoS One ; 7(9): e44151, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970172

RESUMO

BACKGROUND: Cardiovascular disease (CVD) remains one of the major killers in modern society. One strong risk factor of CVD is cigarette smoking that causes myocardial injury and leads to the genesis of pathological cardiovascular events. However, the exact toxic component(s) of cigarette smoke (CS) and its molecular and cellular mechanisms for causing myocardial injury leading to heart damage and its prevention are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using a guinea pig model, here we show that chronic exposure to CS produces myocardial injury that is prevented by vitamin C. Male guinea pigs were fed either vitamin C-deficient (0.5 mg/day) or vitamin C-sufficient (15 mg/day) diet and subjected to CS exposure from 5 Kentucky Research cigarettes (3R4F)/day (6 days/week) in a smoke chamber up to 8 weeks. Pair-fed sham controls were subjected to air exposure instead of CS exposure under similar conditions. Myocardial injury was produced in CS-exposed marginal vitamin C-deficient guinea pigs as evidenced by release of cardiac Troponin-T and I in the serum, oxidative stress, inflammation, apoptosis, thrombosis and collagen deposition in the myocardium. Treatment of rat cardiomyocyte cells (H9c2) in vitro and guinea pigs in vivo with p-benzoquinone (p-BQ) in amounts derived from CS revealed that p-BQ was a major factor responsible for CS-induced myocardial damage. A moderately large dose of vitamin C (15 mg/day) prevented CS/p-BQ-induced myocardial injury. Population based studies indicated that plasma vitamin C levels of smokers without disease were significantly lower (p = 0,0000) than that of non-smokers. Vitamin C levels of CS-related cardiovascular patients were further lower (p = 0.0000) than that of smokers without disease. CONCLUSIONS/SIGNIFICANCE: The results indicate that dietary supplementation of vitamin C may be a novel and simple therapy for the prevention of pathological cardiovascular events in habitual smokers.


Assuntos
Ácido Ascórbico/farmacologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Miocárdio/patologia , Fumar/efeitos adversos , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Ácido Ascórbico/sangue , Ácido Ascórbico/uso terapêutico , Benzoquinonas/metabolismo , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Cobaias , Humanos , Inflamação/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
4.
J Oncol ; 2011: 561862, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21772844

RESUMO

Lung cancer is the leading cause of cancer dearth. Cigarette smoking is the strongest risk factor for developing lung cancer, which is conceivably initiated by proliferation. Here, we show that low concentration of aqueous extract of cigarette smoke (AECS) causes excessive proliferation of human lung epithelial cells (A549) without any apoptotic cell death. The causative factor responsible for AECS-induced proliferation has been identified as p-benzoquinone (p-BQ). Coimmunoprecipitation and immunoblot experiments indicate that p-BQ binds with epidermal growth factor receptor (EGFR). However, in contrast to EGF, it causes aberrant phosphorylation of EGFR that lacks c-Cbl-mediated ubiquitination and degradation resulting in persistent activation of EGFR. This is followed by activation of Hras + Kras and the downstream survival and proliferative signaling molecules Akt and ERK1/2, as well as the nuclear transcription factors c-Myc and c-Fos. Vitamin C and/or antibody to p-BQ prevents AECS/p-BQ-induced proliferation of lung cells apparently by inactivating p-BQ and thereby preventing activation of EGFR and the downstream signaling molecules. The results suggest that vitamin C and/or antibody to p-BQ may provide a novel intervention for preventing initiation of lung cancer in smokers.

5.
PLoS One ; 6(5): e20590, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655231

RESUMO

BACKGROUND: The etiology of myelodysplastic syndromes (MDS) is largely unknown. Exposure to cigarette smoke (CS) is reported to be associated with MDS risk. There is inconsistent evidence that deficiency of NAD(P)H-quinone: oxidoreductase 1 (NQO1) increases the risk of MDS. Earlier we had shown that CS induces toxicity only in marginal vitamin C-deficient guinea pigs but not in vitamin C-sufficient ones. We therefore considered that NQO1 deficiency along with marginal vitamin C deficiency might produce MDS in CS-exposed guinea pigs. METHODOLOGY AND PRINCIPAL FINDINGS: Here we show that CS exposure for 21 days produces MDS in guinea pigs having deficiency of NQO1 (fed 3 mg dicoumarol/day) conjoint with marginal vitamin C deficiency (fed 0.5 mg vitamin C/day). As evidenced by morphology, histology and cytogenetics, MDS produced in the guinea pigs falls in the category of refractory cytopenia with unilineage dysplasia (RCUD): refractory anemia; refractory thrombocytopenia that is associated with ring sideroblasts, micromegakaryocytes, myeloid hyperplasia and aneuploidy. MDS is accompanied by increased CD34(+) cells and oxidative stress as shown by the formation of protein carbonyls and 8-oxodeoxyguanosine. Apoptosis precedes MDS but disappears later with marked decrease in the p53 protein. MDS produced in the guinea pigs are irreversible. MDS and all the aforesaid pathophysiological events do not occur in vitamin C-sufficient guinea pigs. However, after the onset of MDS vitamin C becomes ineffective. CONCLUSIONS AND SIGNIFICANCE: CS exposure causes MDS in guinea pigs having deficiency of NQO1 conjoint with marginal vitamin C deficiency. The syndromes are not produced in singular deficiency of NQO1 or marginal vitamin C deficiency. Our results suggest that human smokers having NQO1 deficiency combined with marginal vitamin C deficiency are likely to be at high risk for developing MDS and that intake of a moderately large dose of vitamin C would prevent MDS.


Assuntos
Deficiência de Ácido Ascórbico/fisiopatologia , Síndromes Mielodisplásicas/induzido quimicamente , Síndromes Mielodisplásicas/etiologia , NAD(P)H Desidrogenase (Quinona)/deficiência , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Ácido Ascórbico/sangue , Ácido Ascórbico/metabolismo , Medula Óssea/metabolismo , Citometria de Fluxo , Cobaias , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , NAD(P)H Desidrogenase (Quinona)/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Biosci ; 35(2): 217-30, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20689178

RESUMO

In this paper, we have made a comparative evaluation of the cytotoxicity and pathophysiological effects of mainstream smoke from cellulose acetate (CA)-filtered cigarettes with that of charcoal-filtered cigarettes developed in our laboratory. Previously, we had demonstrated that the mainstream smoke from an Indian CA-filtered commercial cigarette contains p-benzosemiquinone (p-BSQ), a major, highly toxic, long-lived water-soluble radical. Here, we have examined 16 brands of different CA-filtered cigarettes including Kentucky research cigarettes, and observed that mainstream smoke from all the cigarettes contains substantial amounts of p-BSQ (100-200 µg/cigarette). We also show that when the CA filter is replaced by a charcoal filter, the amount of p-BSQ in the mainstream smoke is reduced by 73-80%, which is accompanied by a reduction of carbonyl formation in bovine serum albumin to the extent of 70- 90%. The charcoal filter also prevented cytotoxicity in A549 cells as evidenced by MTT assay, apoptosis as evidenced by FACS analysis, TUNEL assay, overexpression of Bax, activation of p53 and caspase 3, as well as emphysematous lung damage in a guinea pig model as seen by histology and morphometric analysis. The results indicate that the charcoal filter developed in our laboratory may protect smokers from cigarette smoke-induced cytotoxity, protein modification, apoptosis and emphysema.


Assuntos
Benzoquinonas/química , Carvão Vegetal/química , Filtração/instrumentação , Nicotiana/química , Enfisema Pulmonar/prevenção & controle , Fumaça/efeitos adversos , Animais , Bovinos , Linhagem Celular Tumoral , Filtração/métodos , Cobaias , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Enfisema Pulmonar/patologia , Poluição por Fumaça de Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...