Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(4): 7436-7447, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459840

RESUMO

We used high-throughput experimental screening methods to unveil the physical and chemical properties of Mn1-x Zn x O wurtzite alloys and identify their appropriate composition for effective water splitting application. The Mn1-x Zn x O thin films were synthesized using combinatorial pulsed laser deposition, permitting for characterization of a wide range of compositions with x varying from 0 to 1. The solubility limit of ZnO in MnO was determined using the disappearing phase method from X-ray diffraction and X-ray fluorescence data and found to increase with decreasing substrate temperature due to kinetic limitations of the thin-film growth at relatively low temperature. Optical measurements indicate the strong reduction of the optical band gap down to 2.1 eV at x = 0.5 associated with the rock salt-to-wurtzite structural transition in Mn1-x Zn x O alloys. Transmission electron microscopy results show evidence of a homogeneous wurtzite alloy system for a broad range of Mn1-x Zn x O compositions above x = 0.4. The wurtzite Mn1-x ZnxO samples with the 0.4 < x < 0.6 range were studied as anodes for photoelectrochemical water splitting, with a maximum current density of 340 µA cm-2 for 673 nm-thick films. These Mn1-x Zn x O films were stable in pH = 10, showing no evidence of photocorrosion or degradation after 24 h under water oxidation conditions. Doping Mn1-x Zn x O materials with Ga dramatically increases the electrical conductivity of Mn1-x Zn x O up to ∼1.9 S/cm for x = 0.48, but these doped samples are not active in water splitting. Mott-Schottky and UPS/XPS measurements show that the presence of dopant atoms reduces the space charge region and increases the number of mid-gap surface states. Overall, this study demonstrates that Mn1-x Zn x O alloys hold promise for photoelectrochemical water splitting, which could be enhanced with further tailoring of their electronic properties.

2.
Mater Sci Eng C Mater Biol Appl ; 94: 619-627, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423747

RESUMO

The main purpose of this work is to obtain homogenous, single ß phase in binary Ti-xNb (x = 18.75, 25, and 31.25 at.%) alloys by simple mixing of pure elemental powders using different sintering techniques such as spark plasma sintering (pressure-assisted sintering) and conventional powder metallurgy (pressure-less sintering). Synthesis parameters such as sintering temperature and holding time etc. are optimized in both techniques in order to get homogenous microstructure. In spark plasma sintering (SPS), complete homogeneous ß phase is achieved in Ti25at.%Nb using 1300 °C sintering temperature with 60 min holding time under 50 MPa pressure. On the other hand, complete ß phase is obtained in Ti25at.%Nb through conventional powder metallurgy (P/M) route using sintering temperature of 1400 °C for 120 min holding time which are adopted from the dilatometry studies. Nano-indentation is carried out for mechanical properties such as Young's modulus and nano-hardness. Elastic properties of binary Ti-xNb compositions are fallen within the range of 80-90 GPa. Cytotoxicity as well as cell adhesion studies carried out using MG63, osteoblast-like cells showed excellent biocompatibility of thus developed Ti25at.%Nb surface irrespective of fabrication route.


Assuntos
Ligas/farmacologia , Tecnologia Biomédica , Metalurgia/métodos , Nióbio/farmacologia , Gases em Plasma/química , Titânio/farmacologia , Linhagem Celular Tumoral , Módulo de Elasticidade , Humanos , Teste de Materiais , Osteoblastos/citologia , Pós , Temperatura , Difração de Raios X
3.
Mater Sci Eng C Mater Biol Appl ; 50: 52-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25746245

RESUMO

High alloyed ß-phase stabilized titanium alloys are known to provide comparable Young's modulus as that to the human bones (~30 GPa) but is marred by its high density. In the present study the low titanium alloyed compositions of binary Ti-Nb and ternary Ti-Nb-Zr alloy systems, having stable ß-phase with low Young's modulus are identified using first principles density functional framework. The theoretical results suggest that the addition of Nb in Ti and Zr in Ti-Nb increases the stability of the ß-phase. The ß-phase in binary Ti-Nb alloys is found to be fully stabilized from 22 at.% of Nb onwards. The calculated Young's moduli of binary ß-Ti-Nb alloy system are found to be lower than that of pure titanium (116 GPa). For Ti-25(at.%)Nb composition the calculated Young's modulus comes out to be ~80 GPa. In ternary Ti-Nb-Zr alloy system, the Young's modulus of Ti-25(at.%)Nb-6.25(at.%)Zr composition is calculated to be ~50 GPa. Furthermore, the directional Young's moduli of these two selected binary (Ti-25(at.%)Nb) and ternary alloy (Ti-25(at.%)Nb-6.25(at.%)Zr) compositions are found to be nearly isotropic in all crystallographic directions.


Assuntos
Ligas/química , Tecnologia Biomédica/métodos , Módulo de Elasticidade , Titânio/química , Anisotropia , Humanos , Resistência ao Cisalhamento , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...