Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(37): 33408-33422, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157758

RESUMO

Scaffold architecture in the sectors of biotechnology and drug discovery research include scaffold hopping and molecular modelling techniques and helps in searching for potential drug candidates containing different core structures using computer-based software, which greatly aids medicinal and pharmaceutical chemistry. Going ahead, the computational method of scaffold architecture is thought to produce new scaffolds, and the method is capable of helping search engines toward producing new scaffolds that are likely to represent potent compounds with high therapeutic applications, which is a possibility in this case as well. Here we probate a different interactive design by natural product hopping, molecular modelling, pharmacophore modelling, modification, and combination of the phytoconstituents present in different medicinal plants for developing a pharmacophore-guided good drug candidate for the variants of SARS-CoV-2 or Covid 19. In the modern era, these approaches are carried out at every level of development of scaffold queries, which are increasingly summarized from chemical structures. In this context, we report on a successfully designed drug-like candidate having a high-binding-affinity "compound SLP" by understanding the relationships between the compounds' pharmacophores, scaffold functional groups, and biological activities beyond their individual applications that abide by Lipinski's rule of five, Ghose rule, Veber rule etc. The new scaffold generated by altering the core of the known phyto-compounds holds a good predicted ADMET profile and is examined with iMODS server to check the molecular dynamics simulation with normal mode analysis (NMA). The scaffold's three-dimensional (3D) structure yields a searchable natural product koenimbine from a conformer database having good ADMET property and high availability in spice Murraya koenigii leaves. M. koenigii leaves are easily available in the market, and might ensure the immunity, good health, and well-being of people if affected with any of the variants of Covid 19. The cell viability studies of koenimbine on murine colorectal carcinoma cell line (CT-26) showed no toxicity on normal mice lymphocyte cells (MLCs). The anticancer mechanism of koenimbine was displayed by its enhanced capacity to produce intercellular reactive oxygen species (ROS) in the colorectal carcinoma cell line.

2.
ACS Omega ; 7(51): 48018-48033, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591115

RESUMO

The eco-friendly, cost-effective, and green fabrication of nanoparticles is considered a promising area of nanotechnology. Here, we report on the green synthesis and characterization of bovine serum albumin (BSA)-decorated chlorogenic acid silver nanoparticles (AgNPs-CGA-BSA) and the studies undertaken to verify their plausible antioxidant and antineoplastic effects. High-resolution transmission electron microscopy (HR-TEM), dynamic light scattering, X-ray diffraction, and Fourier transform infrared analyses depict an average mean particle size of ∼96 nm, spherical morphology, and nanocrystalline structure of AgNPs-CGA-BSA. DPPH scavenging and inhibition of lipid peroxidation signify the noticeable in vitro antioxidant potential of the nanoparticles. The in vitro experimental results demonstrate that AgNPs-CGA-BSA shows significant cytotoxicity to Dalton's lymphoma ascites (DLA) cells and generates an enhanced intracellular reactive oxygen species and oxidized glutathione (GSSG) and reduced glutathione (GSH) in DLA cells. Furthermore, mechanism investigation divulges the pivotal role of the downregulated expression of superoxide dismutase (SOD) and catalase (CAT), and these ultimately lead to apoptotic chromatin condensation in AgNPs-CGA-BSA-treated DLA cells. In addition, in vivo experiments reveal an excellent decrease in tumor cell count, an increase in serum GSH and CAT, SOD, and glutathione peroxidase activities, and a decrease in the malondialdehyde (MDA) level in DLA-bearing mice after AgNPs-CGA-BSA treatment. These findings suggest that the newly synthesized biogenic green silver nanoparticles have remarkable in vitro antioxidant and antineoplastic efficacy that triggers cytotoxicity, oxidative stress, and chromatin condensation in DLA cells and in vivo anticancer efficacy that enhances the host antioxidant status, and these might open a new path in T-cell lymphoma therapy.

3.
ACS Omega ; 7(51): 48572-48582, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591129

RESUMO

Clerodin was isolated from the medicinal plant Clerodendrum infortunatum, and CSD search showed the first crystal structure of clerodin by a single-crystal X-ray diffraction study. We checked its binding potential with target proteins by docking and conducted network pharmacology analysis, ADMET analysis, in silico pathway analysis, normal mode analysis (NMA), and cytotoxic activity studies to evaluate clerodin as a potential anticancer agent. The cell viability studies of clerodin on the human breast carcinoma cell line (MCF-7) showed toxicity on MCF-7 cells but no toxicity toward normal human lymphocyte cells (HLCs). The anticancer mechanism of clerodin was validated by its enhanced capacity to produce intracellular reactive oxygen species (ROS) and to lower the reduced glutathione content in MCF-7 cells.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 319-332, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31054496

RESUMO

A photoinduced electron transfer (PET) and chelation-enhanced fluorescence (CHEF) regulated rhodamine-azobenzene chemosensor (L) was synthesized for chemoselective detection of Al3+, Cr3+, and Cu2+ by UV-Visible absorption study whereas Al3+ and Cr3+ by fluorimetric study in EtOH-H2O solvent. L showed a clear fluorescence emission enhancement of 21 and 16 fold upon addition of Al3+ and Cr3+ due to the 1:1 host-guest complexation, respectively. This is first report on rhodamine-azobenzene based Cr3+ chemosensor. The complex formation, restricted imine isomerization, inhibition of PET (photo-induced electron transfer) process with the concomitant opening of the spirolactam ring induced a turn-on fluorescence response. The higher binding constants 6.7 × 103 M-1 and 3.8 × 103 M-1 for Al3+ and Cr3+, respectively and lower detection limits 1 × 10-6 M and 2 × 10-6 M for Al3+ and Cr3+, respectively in a buffered solution with high reversible nature describes the potential of L as an effective tool for detecting Al3+ and Cr3+ in a biological system with higher intracellular resolution. Finally, L was used to map the intracellular concentration of Al3+ and Cr3+ in human lymphocyte cells (HLCs) at physiological pH very effectively. Altogether, our findings will pave the way for designing new chemosensors for multiple analytes and those chemosensors will be effective for cell imaging study.


Assuntos
Alumínio/análise , Compostos Azo/química , Cromo/análise , Cobre/análise , Linfócitos/química , Rodaminas/química , Técnicas Biossensoriais , Cátions/análise , Células Cultivadas , Fluorometria , Humanos , Limite de Detecção , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...