Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8001): 1011-1018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418913

RESUMO

Liquid-liquid phase separation (LLPS) of biopolymers has recently been shown to play a central role in the formation of membraneless organelles with a multitude of biological functions1-3. The interplay between LLPS and macromolecular condensation is part of continuing studies4,5. Synthetic supramolecular polymers are the non-covalent equivalent of macromolecules but they are not reported to undergo LLPS yet. Here we show that continuously growing fibrils, obtained from supramolecular polymerizations of synthetic components, are responsible for phase separation into highly anisotropic aqueous liquid droplets (tactoids) by means of an entropy-driven pathway. The crowding environment, regulated by dextran concentration, affects not only the kinetics of supramolecular polymerizations but also the properties of LLPS, including phase-separation kinetics, morphology, internal order, fluidity and mechanical properties of the final tactoids. In addition, substrate-liquid and liquid-liquid interfaces proved capable of accelerating LLPS of supramolecular polymers, allowing the generation of a myriad of three-dimensional-ordered structures, including highly ordered arrays of micrometre-long tactoids at surfaces. The generality and many possibilities of supramolecular polymerizations to control emerging morphologies are demonstrated with several supramolecular polymers, opening up a new field of matter ranging from highly structured aqueous solutions by means of stabilized LLPS to nanoscopic soft matter.

2.
Nanoscale ; 16(9): 4872-4879, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38318671

RESUMO

DNA-modified gold nanoparticles (AuNPs) play a pivotal role in bio-nanotechnology, driving advancements in bio-sensing, bio-imaging, and drug delivery. Synthetic protocols have focused on maximizing the receptor density on particles by fine-tuning chemical conditions, particularly for DNA. Despite their significance, the understanding of hybridization kinetics on functionalized AuNPs is lacking, particularly how this kinetics depends on DNA density and to what extent it varies from particle-to-particle. This study explores the molecular mechanisms of DNA hybridization on densely coated AuNPs by employing a combination of single-molecule microscopy and coarse-grained molecular dynamics simulations providing a quantification of the molecular rate constants for single particles. Our findings demonstrate that DNA receptor density and the presence of spacer strands profoundly impact association kinetics, with short spacers enhancing association rates by up to ∼15-fold. In contrast, dissociation kinetics are largely unaffected by receptor density within the studied range. Single-particle analysis directly reveals variability in hybridization kinetics, which is analyzed in terms of intra- and inter-particle heterogeneity. A coarse-grained DNA model that quantifies hybridization kinetics on densely coated surfaces further corroborates our experimental results, additionally shedding light on how transient base pairing within the DNA coating influences kinetics. This integrated approach underscores the value of single-molecule studies and simulations for understanding DNA dynamics on densely coated nanoparticle surfaces, offering guidance for designing DNA-functionalized nanoparticles in sensor applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas/química , DNA/química , Hibridização de Ácido Nucleico , Nanotecnologia , Cinética
3.
ACS Phys Chem Au ; 3(2): 143-156, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968450

RESUMO

In recent years, the sensitivity and specificity of optical sensors has improved tremendously due to improvements in biochemical functionalization protocols and optical detection systems. As a result, single-molecule sensitivity has been reported in a range of biosensing assay formats. In this Perspective, we summarize optical sensors that achieve single-molecule sensitivity in direct label-free assays, sandwich assays, and competitive assays. We describe the advantages and disadvantages of single-molecule assays and summarize future challenges in the field including their optical miniaturization and integration, multimodal sensing capabilities, accessible time scales, and compatibility with real-life matrices such as biological fluids. We conclude by highlighting the possible application areas of optical single-molecule sensors that include not only healthcare but also the monitoring of the environment and industrial processes.

4.
Small ; 18(31): e2201602, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35789234

RESUMO

Biofunctionalized nanoparticles are increasingly used in biomedical applications including sensing, targeted delivery, and hyperthermia. However, laser excitation and associated heating of the nanomaterials may alter the structure and interactions of the conjugated biomolecules. Currently no method exists that directly monitors the local temperature near the material's interface where the conjugated biomolecules are. Here, a nanothermometer is reported based on DNA-mediated points accumulation for imaging nanoscale topography (DNA-PAINT) microscopy. The temperature dependent kinetics of repeated and reversible DNA interactions provide a direct readout of the local interfacial temperature. The accuracy and precision of the method is demonstrated by measuring the interfacial temperature of many individual gold nanoparticles in parallel, with a precision of 1 K. In agreement with numerical models, large particle-to-particle differences in the interfacial temperature are found due to underlying differences in optical and thermal properties. In addition, the reversible DNA interactions enable the tracking of interfacial temperature in real-time with intervals of a few minutes. This method does not require prior knowledge of the optical and thermal properties of the sample, and therefore opens the window to understanding and controlling interfacial heating in a wide range of nanomaterials.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia , Nanoestruturas/química
5.
Acc Chem Res ; 54(6): 1409-1418, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33570394

RESUMO

ConspectusThe rediscovery of the halide perovskite class of compounds and, in particular, the organic and inorganic lead halide perovskite (LHP) materials and lead-free derivatives has reached remarkable landmarks in numerous applications. First among these is the field of photovoltaics, which is at the core of today's environmental sustainability efforts. Indeed, these efforts have born fruit, reaching to date a remarkable power conversion efficiency of 25.2% for a double-cation Cs, FA lead halide thin film device. Other applications include light and particle detectors as well as lighting. However, chemical and thermal degradation issues prevent perovskite-based devices and particularly photovoltaic modules from reaching the market. The soft ionic nature of LHPs makes these materials susceptible to delicate changes in the chemical environment. Therefore, control over their interface properties plays a critical role in maintaining their stability. Here we focus on LHP nanocrystals, where surface termination by ligands determines not only the stability of the material but also the crystallographic phase and crystal habit. A surface analysis of nanocrystal interfaces revealed the involvement of Brønsted type acid-base equilibrium in the modification of the ligand moieties present, which in turn can invoke dissolution and recrystallization into the more favorable phase in terms of minimization of the surface energy. A large library of surface ligands has already been developed showing both good chemical stability and good electronic surface passivation, resulting in near-unity emission quantum yields for some materials, particularly CsPbBr3. However, most of those ligands have a large organic tail hampering charge carrier transport and extraction in nanocrystal-based solid films.The unique perovskite structure that allows ligand substitution in the surface A (cation) sites and the soft ionic nature is expected to allow the accommodation of large dipoles across the perovskite crystal. This was shown to facilitate electron transfer across a molecular linked single-particle junction, creating a large built-in field across the junction nanodomains. This strategy could be useful for implementing LHP NCs in a p-n junction photovoltaic configuration as well as for a variety of electronic devices. A better understanding of the surface propeties of LHP nanocrystals will also enable better control of their growth on surfaces and in confined volumes, such as those afforded by metal-organic frameworks, zeolites, or chemically patterened surfaces such as anodic alumina, which have already been shown to significantly alter the properties of in-situ-grown LHP materials.

6.
J Chem Phys ; 151(17): 174704, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703516

RESUMO

Formation of a p-n junction-like with a large built-in field is demonstrated at the nanoscale, using two types of semiconducting nanoparticles, CsPbBr3 nanocrystals and CdSe nanoplatelets, capped with molecular linkers. By exploiting chemical recognition of the capping molecules, the two types of nanoparticles are brought into mutual contact, thus initiating spontaneous charge transfer and the formation of a strong junction field. Depending on the choice of capping molecules, the magnitude of the latter field is shown to vary in a broad range, corresponding to an interface potential step as large as ∼1 eV. The band diagram of the system as well as the emergence of photoinduced charge transfer processes across the interface is studied here by means of optical and photoelectron based spectroscopies. Our results propose an interesting template for generating and harnessing internal built-in fields in heterogeneous nanocrystal solids.

7.
J Food Prot ; 81(6): 926-933, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29745757

RESUMO

The present study investigated the efficacy of selenium (Se) in reduction of enterohemorrhagic Escherichia coli (EHEC) exopolysaccharide (EPS) synthesis, inhibition of biofilm formation at 25 and 4°C on polystyrene surface, and inactivation of mature EHEC biofilms in combination with hot water. Sterile 96-well polystyrene plates inoculated with EHEC (∼6.0 log CFU per well) were treated with a subinhibitory concentration (SIC) of Se, and biofilms were allowed to mature at 4 and 25°C for 96 h. Biofilm-associated bacterial population was determined by scraping and plating, whereas the extent of EPS production was determined using ruthenium red staining assay. Solid surface assay was used to study the effect of Se on early attachment of EHEC cells to polystyrene. The efficacy of Se in rapid inactivation of preformed, mature EHEC biofilm was investigated by treating biofilms on polystyrene plates with the MBC of Se in combination with hot water at 80°C with a contact time of 0 min, 30 s, 2 min, and 5 min. Furthermore, the effect of Se on EHEC biofilm architecture was visualized using confocal microscopy, whereas the effect of Se on EHEC biofilm genes was determined using real-time quantitative PCR (RT-qPCR). Finally, the potential feasibility of coating stainless steel surfaces with Se nanoparticles to inhibit EHEC biofilm formation was studied. Se reduced early attachment of planktonic cells, biofilm formation, and EPS synthesis in EHEC ( P < 0.05). Se in combination with hot water reduced biofilm-associated bacterial counts by 3 to 4 log CFU/mL at 5 min of exposure compared with the control ( P < 0.05). However, hot water treatment alone decreased biofilm-associated bacterial counts by only 1.0 log CFU/mL. RT-qPCR results revealed that Se down-regulated the transcription of critical genes associated with biofilm synthesis in EHEC ( P < 0.05). The results collectively suggest that Se could potentially be used to control EHEC biofilms in food processing environments, but appropriate applications need to be validated.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli Êntero-Hemorrágica , Indústria de Processamento de Alimentos , Selênio/farmacologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/fisiologia , Aço Inoxidável
8.
ACS Omega ; 3(10): 14151-14156, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458107

RESUMO

Hybrid nanostructures comprised of metal nanoparticles (MNPs) and quantum dots (QDs) have been found to exhibit unique, new optical properties due to the interaction that occurs between the MNPs and QDs. The aim of this work is to understand how the exciton-plasmon interaction in these systems is dependent on the excitation wavelength. The nanoassemblies consisted of gold (Au) NPs coated in a silica (SiO2) shell of a controlled thickness and core/shell CdSe/CdS QDs adsorbed onto the SiO2 shells. Our findings show that the photoluminescence lifetimes of the hybrid constructs are dependent on the excitation wavelength relative to the localized surface plasmon resonance (LSPR) of the Au NPs. When the excitation wavelength is closer to the LSPR, the photoluminescence decay of the hybrid structures is faster. We demonstrate that by tuning the excitation wavelength close to the resonance, there is an enhancement in the exciton-plasmon coupling between the Au NPs and QDs resulting in a shortening in the QD photoluminescence lifetime. We then propose a possible mechanism to explain this excitation wavelength-dependent phenomenon.

9.
Nanoscale ; 10(3): 1038-1046, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29265148

RESUMO

In this study, we aim to investigate the change in photon emission statistics of single CdSe/CdS core/shell quantum dots (QDs) on dielectric modified gold nanoparticle (NP) substrates as a function of the excitation wavelength. Photons emitted from single QDs are typically "anti-bunched" and are independent of the excitation wavelength. However, when QDs are coupled to plasmonic substrates, even at the low excitation power regime, we observed a significant change in photoluminescence emission behavior of single QDs; i.e. the emission transformed from incomplete photon anti-bunched to bunched when the excitation was changed from "off" to "on" plasmon resonance. Theoretical studies based on electrodynamics modeling suggested that for the QD-Au NP system, the quantum yield of single excitons decreases while that of biexcitons increases. In addition, when excited at the "on" resonance condition, the absorption is highly enhanced, resulting in an increased population of higher order excitons of the QDs. The higher order exciton emission was directly observed as an additional peak appeared at the blue side of the exciton peak of single QDs. The combined effect of the change in quantum yield and the increase in the absorption cross-section switches the photons emitted by single QDs from anti-bunched to bunched. These results provided direct evidence that not only the plasmonic nanostructures but also the excitation wavelength can effectively control the photon emission statistics of single QDs in the hybrid metal-semiconductor system. Manipulating the multiexciton-plasmon interaction in a hybrid complex like this could possibly open up new doors for applications such as entangled photon pair generation and plasmon-enhanced optoelectronic devices.

10.
J Phys Chem Lett ; 7(15): 2921-9, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27411778

RESUMO

Quantum dots are nanoscale quantum emitters with high quantum yield and size-dependent emission wavelength, holding promises in many optical and electronic applications. When quantum dots are situated close to noble metal nanoparticles, their emitting behavior can be conveniently tuned because of the interaction between the excitons of the quantum dots and the plasmons of the metal nanoparticles. This interaction at the single quantum dot level gives rise to reduced or suppressed photoluminescence blinking and enhanced multiexciton emission, which is difficult to achieve in isolated quantum dots. However, the mechanism of how plasmonic structures cause the changes in the quantum dot emission remains unclear. Because of the complexity of the system, the interfaces between metal, semiconductor, and ligands must be considered, in addition to factors such as geometry, interparticle distance, and spectral overlap. The challenges in the design and fabrication of the hybrid nanostructures as well as in understanding the exciton-plasmon coupling mechanism can be overcome by a cooperative effort in synthesis, optical spectroscopy, and theoretical modeling.

11.
ACS Appl Mater Interfaces ; 7(24): 13189-97, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26030223

RESUMO

Fluorescent pyrene-polyethersulfone (Py-PES) nanofibers were prepared through electrospinning technique using mixed solvents. The effects of mixed solvent ratio and polymer/fluorophore concentrations on electrospun nanofiber's morphology and its sensing performance were systematically investigated and optimized. The Py-PES nanofibers prepared under optimized conditions were further applied for highly sensitive detection of explosives, such as picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) in aqueous phase with limits of detection (S/N = 3) of 23, 160, 400, and 980 nM, respectively. The Stern-Volmer (S-V) plot for Py excimer fluorescence quenching by PA shows two linear regions at low (0-1 µM) and high concentration range (>1 µM) with a quenching constant of 1.263 × 10(6) M(-1) and 5.08 × 10(4) M(-1), respectively. On the contrary, S-V plots for Py excimer fluorescence quenching by TNT, DNT, and RDX display an overall linearity in the entire tested concentration range. The fluorescence quenching by PA can be attributed to the fact that both photoinduced electron transfer and energy transfer are involved in the quenching process. In addition, pyrene monomer fluorescence is also quenched and exhibits different trends for different explosives. Fluorescence lifetime studies have revealed a dominant static quenching mechanism of the current fluorescent sensors for explosives in aqueous solution. Selectivity study demonstrates that common interferents have an insignificant effect on the emission intensity of the fluorescent nanofibers in aqueous phase, while reusability study indicates that the fluorescent nanofibers can be regenerated. Spiked real river water sample was also tested, and negligible matrix effect on explosives detection was observed. This research provides new insights into the development of fluorescent explosive sensor with high performance.

12.
Nanoscale ; 7(15): 6851-8, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25806486

RESUMO

In this work, we systematically investigated the plasmonic effect on blinking, photon antibunching behavior and biexciton emission of single CdSe/CdS core/shell quantum dots (QDs) near gold nanoparticles (NPs) with a silica shell (Au@SiO2). In order to obtain a strong interaction between the plasmons and excitons, the Au@SiO2 NPs and CdSe/CdS QDs of appropriate sizes were chosen so that the plasmon resonance overlaps with the absorption and emission of the QDs. We observed that in the regime of a low excitation power, the photon antibunching and blinking properties of single QDs were modified significantly when the QDs were on the Au@SiO2 substrates compared to those on glass. Most significantly, second-order photon intensity correlation data show that the presence of plasmons increases the ratio of the biexciton quantum yield over the exciton quantum yield (QYBX/QYX). An electrodynamics model was developed to quantify the effect of plasmons on the lifetime, quantum yield, and emission intensity of the biexcitons for the QDs. Good agreement was obtained between the experimentally measured and calculated changes in QYBX/QYX due to Au@SiO2 NPs, showing the validity of the developed model. The theoretical studies also indicated that the relative position of the QDs to the Au NPs and the orientation of the electric field are important factors that regulate the emission properties of the excitons and biexcitons of QDs. The study suggests that the multiexciton emission efficiency in QD systems can be manipulated by employing properly designed plasmonic structures.

13.
J Phys Chem B ; 115(7): 1638-51, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21271727

RESUMO

Photoinduced intermolecular electron transfer (ET) dynamics between various 7-aminocoumarin acceptors and N,N-dimethylaniline (DMAN) donor has been studied in copolymer-surfactant supramolecular assemblies prepared in aqueous 1% P123 triblock copolymer micellar solution with varying concentration of surfactants (sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium chloride (CTAC), and triton-X-100 (TX100)). The aim of the present study is to modulate the reaction environment, especially the degree of micellar hydration inside the P123 micelle by the addition of the surfactants, which can modulate the ET reaction through the changes in the ET rates and the reaction exergonicity. Within the limited surfactant to copolymer molar ratios (n) used in the present study, fluorescence spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS) investigations indicate that the copolymer-surfactant supramolecular assemblies retain their micellar structure, although the micellar size gradually decreases with n. The redox potentials of the electron donor and acceptors are also found to change with n, although the extent of the effect is different for SDS, CTAC, and TX100 cosurfactants. In the presence of CTAC, the estimated exergonicity (-ΔG(0)) of the ET reaction is found to increase with an increase in n compared with that in pure P123, whereas it decreases marginally with SDS and remains almost the same for TX100. Substantial quenching of coumarin fluorescence is observed in the presence of DMAN in all copolymer-surfactant micellar aggregates because of ET reaction. The ET rate is seen to increase gradually with an increase in SDS and CTAC concentration in the supramolecular assembly, although it remains unaffected on the addition of TX100. The increased ionic strength in the Corona region of the copolymer-surfactant supramolecular aggregates due to the addition of the ionic surfactants has been envisaged for the increase in the ET rates. A correlation of the quenching rate constants with the free-energy changes (ΔG(0)) of the ET reactions shows the typical bell-shaped curve as predicted by Marcus outersphere ET theory. A substantial shift along the exergonicity axis (~0.3 eV) for the appearance of the Marcus correlation is observed in some cases, although the extent of such shift depends on both the nature of the cosurfactant and the amount of cosurfactant used in the copolymer-surfactant supramolecular assembly. Therefore, these preliminary results suggest a possibility of not only modulating the ET rates but also tuning the appearance of Marcus inversion along the exergonicity scale by suitably tuning the reaction environment inside the copolymer-surfactant supramolecular assemblies with a relatively more hydrophilic cosurfactant.


Assuntos
Compostos de Anilina/química , Cumarínicos/química , Poloxaleno/química , Tensoativos/química , Transporte de Elétrons , Substâncias Macromoleculares/química , Micelas , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...