Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 18(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260204

RESUMO

High-throughput screening assays have been designed to identify compounds capable of inhibiting phenotypes involved in cancer aggressiveness. However, most studies used commercially available chemical libraries. This prompted us to explore natural products isolated from marine-derived fungi as a new source of molecules. In this study, we established a chemical library from 99 strains corresponding to 45 molecular operational taxonomic units and evaluated their anticancer activity against the MCF7 epithelial cancer cell line and its invasive stem cell-like MCF7-Sh-WISP2 counterpart. We identified the marine fungal Paradendryphiella salina PC 362H strain, isolated from the brown alga Pelvetia caniculata (PC), as one of the most promising fungi which produce active compounds. Further chemical and biological characterizations of the culture of the Paradendryphiella salina PC 362H strain identified (-)-hyalodendrin as the active secondary metabolite responsible for the cytotoxic activity of the crude extract. The antitumor activity of (-)-hyalodendrin was not only limited to the MCF7 cell lines, but also prominent on cancer cells with invasive phenotypes including colorectal cancer cells resistant to chemotherapy. Further investigations showed that treatment of MCF7-Sh-WISP2 cells with (-)-hyalodendrin induced changes in the phosphorylation status of p53 and altered expression of HSP60, HSP70 and PRAS40 proteins. Altogether, our study reveals that this uninvestigated marine fungal crude extract possesses a strong therapeutic potential against tumor cells with aggressive phenotypes and confirms that members of the epidithiodioxopiperazines are interesting fungal toxins with anticancer activities.


Assuntos
Antineoplásicos/farmacologia , Ascomicetos/química , Sobrevivência Celular/efeitos dos fármacos , Fungos/química , Micotoxinas/farmacologia , Piperazinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Produtos Biológicos/farmacologia , Linhagem Celular , Humanos , Células MCF-7 , Camundongos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase , Tiorredoxinas , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
2.
Chemistry ; 24(62): 16686-16691, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30168631

RESUMO

An intramolecular Diels-Alder (IMDA) reaction efficiently accelerated by Schreiner's thiourea is reported, to build a functionalized cytochalasin scaffold (periconiasin series) for biological purposes. DFT calculation highlighted a unique multidentate cooperative hydrogen bonding in this catalysis. The deprotection end game afforded a collection of diverse structures and showed the peculiar reactivity of the Diels-Alder cycloadducts upon functionalization. Biological studies revealed strong cytotoxicity of a few compounds on breast cancer cell lines while actin polymerization is preserved.


Assuntos
Antineoplásicos/química , Citocalasinas/química , Citoesqueleto de Actina/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cristalografia por Raios X , Reação de Cicloadição , Citocalasinas/síntese química , Citocalasinas/farmacologia , Humanos , Ligação de Hidrogênio , Conformação Molecular , Paládio/química , Estereoisomerismo , Termodinâmica , Tioureia/química
3.
J Org Chem ; 83(8): 4871-4881, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29596742

RESUMO

An intramolecular aryne Diels-Alder reaction with a furan moiety was applied to the synthesis of dihydrobenzo[ de]isochromenes as intermediates toward naphthalimides. After oxidation, this method offers an efficient approach for the synthesis of substituted naphthalimides, which showed potent cytotoxic activity against HT-29 human cancer cell line.


Assuntos
Antineoplásicos/química , Antineoplásicos/síntese química , Derivados de Benzeno/química , Furanos/química , Naftalimidas/química , Naftalimidas/síntese química , Reação de Cicloadição
4.
Curr Pharm Des ; 22(44): 6625-6644, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27587198

RESUMO

Despite the efficacy of most cancer therapies, drug resistance remains a major problem in the clinic. The eradication of the entire tumor and the cure of the patient by chemotherapy alone are rare, in particular for advanced disease. From an evolutionary perspective, the selective pressure exerted by chemotherapy leads to the emergence of resistant clones where resistance can be associated with many different functional mechanisms at the single cell level or can involve changes in the tumor micro-environment. In the last decade, tumor genomics has contributed to the improvement of our understanding of tumorigenesis and has led to the identification of numerous cellular targets for the development of novel therapies. However, since tumors are by nature extremely heterogeneous, the drug efficacy and economical sustainability of this approach is now debatable. Importantly, tumor cell heterogeneity depends not only on genetic modifications but also on non-genetic processes involving either stochastic events or epigenetic modifications making genetic biomarkers of uncertain utility. In this review, we wish to highlight how evolutionary biology can impact our understanding of carcinogenesis and resistance to therapies. We will discuss new approaches based on applied ecology and evolution dynamics that can be used to convert the cancer into a chronic disease where the drugs would control tumor growth. Finally, we will discuss the way metabolic dysfunction or phenotypic changes can help developing new delivery systems or phenotypetargeted drugs and how exploring new sources of active compounds can conduct to the development of drugs with original mechanisms of action.


Assuntos
Antineoplásicos/uso terapêutico , Evolução Biológica , Sistemas de Liberação de Medicamentos , Genótipo , Neoplasias/tratamento farmacológico , Fenótipo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...