Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(5): e3001610, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580139

RESUMO

How double-membraned Gram-negative bacteria overcome lipid peroxidation is virtually unknown. Bactericidal antibiotics and superoxide ion stress stimulate the transcription of the Burkholderia cenocepacia bcnA gene that encodes a secreted lipocalin. bcnA gene orthologs are conserved in bacteria and generally linked to a conserved upstream gene encoding a cytochrome b561 membrane protein (herein named lcoA, lipocalin-associated cytochrome oxidase gene). Mutants in bcnA, lcoA, and in a gene encoding a conserved cytoplasmic aldehyde reductase (peroxidative stress-associated aldehyde reductase gene, psrA) display enhanced membrane lipid peroxidation. Compared to wild type, the levels of the peroxidation biomarker malondialdehyde (MDA) increase in the mutants upon exposure to sublethal concentrations of the bactericidal antibiotics polymyxin B and norfloxacin. Microscopy with lipid peroxidation-sensitive fluorescent probes shows that lipid peroxyl radicals accumulate at the bacterial cell poles and septum and peroxidation is associated with a redistribution of anionic phospholipids and reduced antimicrobial resistance in the mutants. We conclude that BcnA, LcoA, and PsrA are components of an evolutionary conserved, hitherto unrecognized peroxidation detoxification system that protects the bacterial cell envelope from lipid peroxyl radicals.


Assuntos
Aldeído Redutase , Lipídeos de Membrana , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Lipocalinas
2.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445410

RESUMO

Development of novel therapeutics to treat antibiotic-resistant infections, especially those caused by ESKAPE pathogens, is urgent. One of the most critical pathogens is P. aeruginosa, which is able to develop a large number of factors associated with antibiotic resistance, including high level of impermeability. Gram-negative bacteria are protected from the environment by an asymmetric Outer Membrane primarily composed of lipopolysaccharides (LPS) at the outer leaflet and phospholipids in the inner leaflet. Based on a large hemi-synthesis program focusing on amphiphilic aminoglycoside derivatives, we extend the antimicrobial activity of 3',6-dinonyl neamine and its branched isomer, 3',6-di(dimethyloctyl) neamine on clinical P. aeruginosa, ESBL, and carbapenemase strains. We also investigated the capacity of 3',6-homodialkyl neamine derivatives carrying different alkyl chains (C7-C11) to interact with LPS and alter membrane permeability. 3',6-Dinonyl neamine and its branched isomer, 3',6-di(dimethyloctyl) neamine showed low MICs on clinical P. aeruginosa, ESBL, and carbapenemase strains with no MIC increase for long-duration incubation. In contrast from what was observed for membrane permeability, length of alkyl chains was critical for the capacity of 3',6-homodialkyl neamine derivatives to bind to LPS. We demonstrated the high antibacterial potential of the amphiphilic neamine derivatives in the fight against ESKAPE pathogens and pointed out some particular characteristics making the 3',6-dinonyl- and 3',6-di(dimethyloctyl)-neamine derivatives the best candidates for further development.


Assuntos
Compostos Alílicos/farmacologia , Antibacterianos/farmacologia , Framicetina/química , Bactérias Gram-Negativas/crescimento & desenvolvimento , Lipopolissacarídeos/metabolismo , Compostos Alílicos/síntese química , Compostos Alílicos/química , Antibacterianos/síntese química , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo
3.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049963

RESUMO

The conjugation of hydrophobic group(s) to the polycationic hydrophilic core of the antibiotic drugs aminoglycosides (AGs), targeting ribosomal RNA, has led to the development of amphiphilic aminoglycosides (AAGs). These drugs exhibit numerous biological effects, including good antibacterial effects against susceptible and multidrug-resistant bacteria due to the targeting of bacterial membranes. In the first part of this review, we summarize our work in identifying and developing broad-spectrum antibacterial AAGs that constitute a new class of antibiotic agents acting on bacterial membranes. The target-shift strongly improves antibiotic activity against bacterial strains that are resistant to the parent AG drugs and to antibiotic drugs of other classes, and renders the emergence of resistant Pseudomonas aeruginosa strains highly difficult. Structure-activity and structure-eukaryotic cytotoxicity relationships, specificity and barriers that need to be crossed in their development as antibacterial agents are delineated, with a focus on their targets in membranes, lipopolysaccharides (LPS) and cardiolipin (CL), and the corresponding mode of action against Gram-negative bacteria. At the end of the first part, we summarize the other recent advances in the field of antibacterial AAGs, mainly published since 2016, with an emphasis on the emerging AAGs which are made of an AG core conjugated to an adjuvant or an antibiotic drug of another class (antibiotic hybrids). In the second part, we briefly illustrate other biological and biochemical effects of AAGs, i.e., their antifungal activity, their use as delivery vehicles of nucleic acids, of short peptide (polyamide) nucleic acids (PNAs) and of drugs, as well as their ability to cleave DNA at abasic sites and to inhibit the functioning of connexin hemichannels. Finally, we discuss some aspects of structure-activity relationships in order to explain and improve the target selectivity of AAGs.


Assuntos
Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Cardiolipinas/metabolismo , Portadores de Fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Solubilidade , Relação Estrutura-Atividade
4.
J Hazard Mater ; 396: 122616, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32289641

RESUMO

Metal oxide nanoparticles (NPs), and among them metal oxides Quantum Dots (QDs), exhibit a multifactorial toxicity combining metal leaching, oxidative stress and possibly direct deleterious interactions, the relative contribution of each varying according to the NP composition and surface chemistry. Their wide use in public and industrial domains requires a good understanding and even a good control of their toxicity. To address this question, we engineered ZnO QDs with different surface chemistries, expecting that they would exhibit different photo-induced reactivities and possibly different levels of interaction with biological materials. No photo-induced toxicity could be detected on whole bacterial cell toxicity assays, indicating that ROS-dependent damages, albeit real, are hidden behind a stronger source of toxicity, which was comforted by the fact that the different ZnO QDs displayed the same level of cell toxicity. However, using in vitro DNA damage assays based on quantitative PCR, significant photo-induced reactivity could be measured precisely, showing that different NPs exhibiting similar inhibitory effects on whole bacteria could differ dramatically in terms of ROS-generated damages on biomolecules. We propose that direct interactions between NPs and bacterial cell surfaces prime over any kind of intracellular damages to explain the ZnO QDs toxicity on whole bacterial cells.


Assuntos
Nanopartículas Metálicas , Pontos Quânticos , Óxido de Zinco , Oxirredução , Estresse Oxidativo , Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio , Zinco , Óxido de Zinco/toxicidade
5.
Molecules ; 24(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434312

RESUMO

Alternative splicing of tau pre-mRNA is regulated by a 5' splice site (5'ss) hairpin present at the exon 10-intron 10 junction. Single mutations within the hairpin sequence alter hairpin structural stability and/or the binding of splicing factors, resulting in disease-causing aberrant splicing of exon 10. The hairpin structure contains about seven stably formed base pairs and thus may be suitable for targeting through antisense strands. Here, we used antisense peptide nucleic acids (asPNAs) to probe and target the tau pre-mRNA exon 10 5'ss hairpin structure through strand invasion. We characterized by electrophoretic mobility shift assay the binding of the designed asPNAs to model tau splice site hairpins. The relatively short (10-15 mer) asPNAs showed nanomolar binding to wild-type hairpins as well as a disease-causing mutant hairpin C+19G, albeit with reduced binding strength. Thus, the structural stabilizing effect of C+19G mutation could be revealed by asPNA binding. In addition, our cell culture minigene splicing assay data revealed that application of an asPNA targeting the 3' arm of the hairpin resulted in an increased exon 10 inclusion level for the disease-associated mutant C+19G, probably by exposing the 5'ss as well as inhibiting the binding of protein factors to the intronic spicing silencer. On the contrary, the application of asPNAs targeting the 5' arm of the hairpin caused an increased exon 10 exclusion for a disease-associated mutant C+14U, mainly by blocking the 5'ss. PNAs could enter cells through conjugation with amino sugar neamine or by cotransfection with minigene plasmids using a commercially available transfection reagent.


Assuntos
Processamento Alternativo , Oligonucleotídeos Antissenso/genética , Ácidos Nucleicos Peptídicos/genética , Proteínas tau/genética , Éxons , Células HEK293 , Humanos , Conformação Molecular , Precursores de RNA , Sítios de Splice de RNA , RNA Mensageiro/genética
6.
Biochim Biophys Acta Biomembr ; 1861(10): 182998, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31153908

RESUMO

Amphiphilic aminoglycoside derivatives are potential new antimicrobial agents mostly developed to fight resistant bacteria. The mechanism of action of the 3',6-dinonyl neamine, one of the most promising derivative, has been investigated on Gram-negative bacteria, including P. aeruginosa. In this study, we have assessed its mechanism of action against Gram-positive bacteria, S. aureus and B. subtilis. By conducting time killing experiments, we assessed the bactericidal effect induced by 3',6-dinonyl neamine on S. aureus MSSA and MRSA. By measuring the displacement of BODIPY™-TR cadaverine bound to lipoteichoic acids (LTA), we showed that 3',6-dinonyl neamine interacts with these bacterial surface components. We also highlighted the ability of 3',6-dinonyl neamine to enhance membrane depolarization and induce membrane permeability, by using fluorescent probes, DiSC3C(5) and propidium iodide, respectively. These effects are observed for both MSSA and MRSA S. aureus as well as for B. subtilis. By electronic microscopy, we imaged the disruption of membrane integrity of the bacterial cell wall and by fluorescence microscopy, we demonstrated changes in the localization of lipids from the enriched-septum region and the impairment of the formation of septum. At a glance, we demonstrated that 3',6-dinonyl neamine interferes with multiple targets suggesting a low ability of bacteria to acquire resistance to this agent. In turn, the amphiphilic neamine derivatives are promising candidates for development as novel multitarget therapeutic antibiotics.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Framicetina/metabolismo , Framicetina/farmacologia , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Membrana Celular/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Lipopolissacarídeos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tensoativos/farmacologia , Ácidos Teicoicos
7.
J Hazard Mater ; 304: 532-42, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26619052

RESUMO

3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu(2+)-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu(2+) ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu(2+) location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (OH, O2(-), H2O2 and (1)O2) and that ZnO@APTMS/Cu QDs generate more OH and O2(-) radicals and H2O2 than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presence of Cu(2+) ions at the periphery of the nanocrystals. On the other hand, with the lack of photo-induced toxicity, it can be inferred that ROS production cannot explain the cytotoxicity associated to the QDs. Our study demonstrates that both the production of ROS from ZnO QDs and their toxicity may be enhanced by chemisorbed Cu(2+) ions, which could be useful for medical or photocatalytic applications.


Assuntos
Cobre , Pontos Quânticos , Óxido de Zinco , Cobre/química , Cobre/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Propilaminas/química , Propilaminas/toxicidade , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/toxicidade , Silanos/química , Silanos/toxicidade , Óxido de Zinco/química , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...