Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 10707, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878258

RESUMO

Compelling evidence suggests that volatile organic compounds (VOCs) have potentially harmful effects to the skin. However, knowledge about cellular signaling events and toxicity subsequent to VOC exposure to human skin cells is still poorly documented. The aim of this study was to focus on the interaction between 5 different VOCs (hexane, toluene, acetaldehyde, formaldehyde and acetone) at doses mimicking chronic low level environmental exposure and the effect on human keratinocytes to get better insight into VOC-cell interactions. We provide evidence that the proteasome, a major intracellular proteolytic system which is involved in a broad array of processes such as cell cycle, apoptosis, transcription, DNA repair, protein quality control and antigen presentation, is a VOC target. Proteasome inactivation after VOC exposure is accompanied by apoptosis, DNA damage and protein oxidation. Lon protease, which degrades oxidized, dysfunctional, and misfolded proteins in the mitochondria is also a VOC target. Using human skin explants we found that VOCs prevent cell proliferation and also inhibit proteasome activity in vivo. Taken together, our findings provide insight into potential mechanisms of VOC-induced proteasome inactivation and the cellular consequences of these events.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores , Dano ao DNA , Glutationa/metabolismo , Humanos , Imunofenotipagem , Oxirredução , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos Orgânicos Voláteis/análise
2.
PLoS One ; 12(3): e0173618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358809

RESUMO

Cold atmospheric pressure plasmas (CAPPs) are known to have bactericidal effects but the mechanism of their interaction with microorganisms remains poorly understood. In this study the bacteria Escherichia coli were used as a model and were exposed to CAPPs. Different gas compositions, helium with or without adjunctions of nitrogen or oxygen, were used. Our results indicated that CAPP induced bacterial death at decontamination levels depend on the duration, post-treatment storage and the gas mixture composition used for the treatment. The plasma containing O2 in the feeding gas was the most aggressive and showed faster bactericidal effects. Structural modifications of treated bacteria were observed, especially significant was membrane leakage and morphological changes. Oxidative stress caused by plasma treatment led to significant damage of E. coli. Biochemical analyses of bacterial macromolecules indicated massive intracellular protein oxidation. However, reactive oxygen and nitrogen species (RONS) are not the only actors involved in E. coli's death, electrical field and charged particles could play a significant role especially for He-O2 CAPP.


Assuntos
Descontaminação , Escherichia coli/efeitos dos fármacos , Gases em Plasma/farmacologia , Pressão Atmosférica , Hélio/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Nitrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Sci Rep ; 7: 41163, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120925

RESUMO

Compelling evidence suggests that Cold Atmospheric Pressure Plasma (CAPP) has potential as a new cancer therapy. However, knowledge about cellular signaling events and toxicity subsequent to plasma treatment is still poorly documented. The aim of this study was to focus on the interaction between 3 different types of plasma (He, He-O2, He-N2) and human epithelial cell lines to gain better insight into plasma-cell interaction. We provide evidence that reactive oxygen and nitrogen species (RONS) are inducing cell death by apoptosis and that the proteasome, a major intracellular proteolytic system which is important for tumor cell growth and survival, is a target of (He or He-N2) CAPP. However, RONS are not the only actors involved in cell death; electric field and charged particles could play a significant role especially for He-O2 CAPP. By differential label-free quantitative proteomic analysis we found that CAPP triggers antioxidant and cellular defense but is also affecting extracellular matrix in keratinocytes. Moreover, we found that malignant cells are more resistant to CAPP treatment than normal cells. Taken together, our findings provide insight into potential mechanisms of CAPP-induced proteasome inactivation and the cellular consequences of these events.


Assuntos
Antioxidantes/farmacologia , Fibroblastos/efeitos dos fármacos , Hélio/farmacologia , Queratinócitos/efeitos dos fármacos , Gases em Plasma/farmacologia , Apoptose , Linhagem Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Pressão , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...