Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 150(1): 233, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34340481

RESUMO

The advantage of ultrasonic fields in harmless and label-free applications intrigued researchers to develop this technology. The capability of acoustofluidic technology for medical applications has not been thoroughly analyzed and visualized. Toward efficient design, in this research, flowing fluid in a microchannel excited by acoustic waves is fully investigated. To study the behavior of acoustic streaming, the main interfering parameters such as inlet velocity, working frequency, displacement amplitude, fluid buffer material, and hybrid effect in a rectangular water-filled microchannel actuated by standing surface acoustic waves are studied. Governing equations for acoustic field and laminar flow are derived employing perturbation theory. For each set of equations, appropriate boundary conditions are applied. Results demonstrate a parallel device is capable of increasing the inlet flow for rapid operations. Frequency increment raises the acoustic streaming velocity magnitude. Displacement amplitude amplification increases the acoustic streaming velocity and helps the streaming flow dominate over the incoming flow. The qualitative analysis of the hybrid effect shows using hard walls can significantly increase the streaming power without depleting excessive energy. A combination of several effective parameters provides an energy-efficient and fully controllable device for biomedical applications such as fluid mixing and cell lysis.


Assuntos
Acústica , Som , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...