Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37233598

RESUMO

This study aimed to calibrate and validate the MFI-UF method in order to ensure the accuracy of particulate fouling measurements in RO. Firstly, the MFI-UF calibration was examined using two solutions of standard particles (dextran and polystyrene). Two main criteria were investigated: (i) MFI-UF linearity with particle concentrations at both low and high ranges of fouling potential and (ii) the reproducibility of MFI-UF linearity. Dextran solutions showed a strong MFI-UF linearity over the entire range of measured MFI-UF. However, the linearity was not reproducible, and different batches of dextran prepared under the same conditions produced very variable results. For polystyrene solutions, the MFI-UF linearity was verified at the higher range of MFI-UF (>10,000 s/L2), while the MFI-UF at the lower range (<5000 s/L2) appeared to be underestimated. Secondly, MFI-UF linearity was investigated using natural (surface) water under a wide range of testing conditions (at 20-200 L/m2·h using 5-100 kDa membranes). Strong MFI-UF linearity was obtained over the entire range of measured MFI-UF (up to 70,000 s/L2). Thus, the MFI-UF method was validated to measure different levels of particulate fouling in RO. However, future research focusing on MFI-UF calibration is still required through the selection, preparation, and testing of heterogeneous mixtures of standard particles.

2.
Membranes (Basel) ; 12(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448351

RESUMO

Rapid population growth and urbanization are two main drivers for the over-abstraction of conventional freshwater resources in various parts of the world, which leads to the situation of water scarcity (per capita availability <1000 m3/year). Predictions based on the World Bank projected population data and the FAO AQUASTAT database for freshwater availability show that by 2050, 2 billion people living in 44 countries will likely suffer from water scarcity, of which 95% may live in developing countries. Among these, the countries that will likely be most strongly hit by water scarcity by 2050 are Uganda, Burundi, Nigeria, Somalia, Malawi, Eritrea, Ethiopia, Haiti, Tanzania, Niger, Zimbabwe, Afghanistan, Sudan, and Pakistan. Currently, these countries have not yet established desalination to meet their freshwater demand. However, the current global trend shows that membrane-based desalination technology is finding new outlets for supplying water to meet growing water demand in most of the water-scarce countries. These 14 water-scarce countries will demand an additional desalination capacity of 54 Mm3/day by 2050 in order to meet the standard of current municipal water demand and to compensate for the withdrawal of renewable resources. Case studies from India, China, and South Africa have highlighted that other countries may apply the strategy of using desalinated water for industrial users. Moreover, challenges to the widespread adoption of desalination exist such as expense, significant energy use, the need for specialized staff training, the large carbon footprint of facilities, environmental issues such as greenhouse gas emission (GHGs), chemical discharge, and operational problems such as membrane fouling.

3.
Membranes (Basel) ; 11(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498544

RESUMO

Measuring the bacterial growth potential of seawater reverse osmosis (SWRO) feed water is an issue that is receiving growing attention. This study developed and demonstrated the applicability of the flow-cytometry (FCM)-based bacterial growth potential (BGP) method to assess the biofouling potential in SWRO systems using natural microbial consortium. This method is relatively fast (2-3 days) compared to conventional bioassays. The effect of the potential introduction of nutrients during measurement has been studied thoroughly to achieve the lowest measure value of about 45,000 cells/mL, which is equivalent to about (10 µg-C glucose/L). The BGP method was applied in two full-scale SWRO plants that included (i) dissolved air flotation (DAF) and ultra-filtration (UF); (ii) dual-media filtration (DMF) and cartridge filter (CF), which were compared with the cleaning frequency of the plants. A significant reduction (54%) in BGP was observed through DAF-UF as pre-treatment (with 0.5 mg Fe3+/L), while there was a 40% reduction by DMF-CF (with 0.8 mg Fe3+/L). In terms of the absolute number, the SWRO feed water after DAF-UF supports 1.5 × 106 cells/mL, which is 1.25 times higher than after DMF-CF. This corresponds to the higher cleaning-in-place (CIP) frequency of SWRO with DAF-UF compared to DMF-CF as pre-treatment, indicating that the BGP method has an added value in monitoring the biofouling potential in SWRO systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...