Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37579028

RESUMO

The knowledge of the frontier orbital, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), energies is vital for studying chemical and electrochemical stability of compounds, their corrosion inhibition potential, reactivity, etc. Density functional theory (DFT) calculations provide a direct route to estimate these energies either in the gas-phase or condensed phase. However, the application of DFT methods becomes computationally intensive when hundreds of thousands of compounds are to be screened. Such is the case when all the isomers for the 1-alkyl-3-alkylimidazolium cation [CnCmim]+ (n = 1-10, m = 1-10) are considered. Enumerating the isomer space of [CnCmim]+ yields close to 386 000 cation structures. Calculating frontier orbital energies for each would be computationally very expensive and time-consuming using DFT. In this article, we develop a machine learning model based on the extreme gradient boosting method using a small subset of the isomer space and predict the HOMO and LUMO energies. Using the model, the HOMO energies are predicted with a mean absolute error (MAE) of 0.4 eV and the LUMO energies are predicted with a MAE of 0.2 eV. Inferences are also drawn on the type of the descriptors deemed important for the HOMO and LUMO energy estimates. Application of the machine learning model results in a drastic reduction in computational time required for such calculations.

2.
ACS Omega ; 5(8): 3863-3877, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149213

RESUMO

MOSCED (modified separation of cohesive energy density) is a solubility parameter method that offers an improved treatment of association interactions. Solubility parameter methods are well known for their ability to both make quantitative predictions and offer a qualitative description of the underlying molecular-level driving forces, lending themselves to intuitive solvent selection and design. Currently, MOSCED parameters are available for 130 organic solvents, water, and 33 imidazolium-based room temperature ionic liquids (ILs). In this work, we expand MOSCED to cover 66 additional ILs containing the pyridinium, quinolinium, pyrrolidinium, piperidinium, bicyclic, morpholinium, ammonium, phosphonium, and sulfonium cations using 10,052 experimental limiting activity coefficients. The resulting parameters may readily be used to predict the phase behavior in mixtures involving ILs.

3.
Molecules ; 23(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082611

RESUMO

Pharmacophore models are an accurate and minimal tridimensional abstraction of intermolecular interactions between chemical structures, usually derived from a group of molecules or from a ligand-target complex. Only a limited amount of solutions exists to model comprehensive pharmacophores using the information of a particular target structure without knowledge of any binding ligand. In this work, an automated and customable tool for truly target-focused (T²F) pharmacophore modeling is introduced. Key molecular interaction fields of a macromolecular structure are calculated using the AutoGRID energy functions. The most relevant points are selected by a newly developed filtering cascade and clustered to pharmacophore features with a density-based algorithm. Using five different protein classes, the ability of this method to identify essential pharmacophore features was compared to structure-based pharmacophores derived from ligand-target interactions. This method represents an extremely valuable instrument for drug design in a situation of scarce ligand information available, but also in the case of underexplored therapeutic targets, as well as to investigate protein allosteric pockets and protein-protein interactions.


Assuntos
Modelos Teóricos , Algoritmos , Desenho de Fármacos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...