Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 5(1): 3-55, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25584743

RESUMO

Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.

2.
Mol Divers ; 19(1): 163-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25502234

RESUMO

Nowadays most of the CNS acting therapeutic molecules are failing in clinical trials due to efflux transporters at the blood brain barrier (BBB) which imparts resistance and poor ADMET properties of these molecules. CNS acting drug molecules interact with the BBB prior to their target site, so there is a need to develop predictive models for BBB permeability which can be used in the initial phases of drug discovery process. Most of the drug molecules are transported to the brain via passive diffusion which is explored extensively; on the other hand, the role of active efflux transporters in BBB permeability is unclear. Our aim is to develop predictive models for BBB permeability that include active efflux transporters. An in silico model has been developed to assess the role of BCRP on BBB permeation. Eight descriptors were selected, which also include BCRP substrate probabilities used for model development and show a relationship between BCRP and logBB. From our analysis, it was found that 11 molecules satisfied all criteria required for BBB permeation but have low logBB values. These 11 molecules are predicted as BCRP substrates from the model developed, suggesting that the molecules are effluxed by the BCRP transporter. This predictive ability was further validated by docking of these 11 molecules into BCRP protein. This study provides a new mechanistic insight into correlation of low logBB values and efflux mechanism of BCRP in BBB.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/farmacologia , Portadores de Fármacos/farmacologia , Humanos , Modelos Biológicos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/farmacologia , Redes Neurais de Computação , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA