Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 109(4): 1121-1127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37767552

RESUMO

The null allele HLA-C*04:09N differs from HLA-C*04:01 in a frameshift mutation within its cytoplasmic domain, resulting in translation of 32 additional amino acids that are assumed to prevent cell surface expression. However, we recently identified a multiple myeloma-reactive T-cell receptor (TCR) that appeared to recognize antigen presented on HLA-C*04:09N and encouraged us to ask whether HLA-C*04:09N, albeit not easily detectable at the cell surface, can present antigen sufficient for T-cell activation. We generated two HLA-class I-deficient cell lines, re-expressed HLAC* 04:09N, detected HLA expression by flow cytometry, and tested for T-cell activation using a cytomegalovirus peptide- specific HLA-C*04:01-restricted TCR. In both cell lines, HLA-C*04:09N expression was detectable at the cell surface and could be enhanced by IFN-γ exposure. Recombinant HLA-C*04:09N expression was sufficient for T-cell activation in vitro, which could be blocked by an HLA-class I-specific antibody, suggesting HLA-TCR interaction at the cell surface. Peripheral blood mononuclear cells isolated from an individual who physiologically expressed HLA-C*04:09N triggered peptide-specific T-cell activation, confirming our results with cells with natural HLA expression levels. In conclusion, we present peptide-specific HLA-C*04:09N-restricted T-cell activation and suggest consideration of this allele in the appropriate clinical context, such as allogeneic stem cell transplantation, or in the setting of cellular therapy.


Assuntos
Antígenos HLA-C , Leucócitos Mononucleares , Humanos , Antígenos HLA-C/genética , Peptídeos , Linfócitos T Citotóxicos , Receptores de Antígenos de Linfócitos T
2.
BMC Med Genomics ; 12(1): 171, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775766

RESUMO

BACKGROUND: Immune escape is one of the hallmarks of cancer and several new treatment approaches attempt to modulate and restore the immune system's capability to target cancer cells. At the heart of the immune recognition process lies antigen presentation from somatic mutations. These neo-epitopes are emerging as attractive targets for cancer immunotherapy and new strategies for rapid identification of relevant candidates have become a priority. METHODS: We carefully screen TCGA data sets for recurrent somatic amino acid exchanges and apply MHC class I binding predictions. RESULTS: We propose a method for in silico selection and prioritization of candidates which have a high potential for neo-antigen generation and are likely to appear in multiple patients. While the percentage of patients carrying a specific neo-epitope and HLA-type combination is relatively small, the sheer number of new patients leads to surprisingly high reoccurence numbers. We identify 769 epitopes which are expected to occur in 77629 patients per year. CONCLUSION: While our candidate list will definitely contain false positives, the results provide an objective order for wet-lab testing of reusable neo-epitopes. Thus recurrent neo-epitopes may be suitable to supplement existing personalized T cell treatment approaches with precision treatment options.


Assuntos
Biologia Computacional/métodos , Epitopos/imunologia , Neoplasias/imunologia , Alelos , Animais , Bases de Dados Factuais , Epitopos/genética , Genes MHC Classe I/genética , Humanos , Camundongos , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...