Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biomed Eng Lett ; 13(4): 591-612, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872986

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder affecting people worldwide. The PD symptoms are divided into motor and non-motor symptoms. Detection of PD is very crucial and essential. Such challenges can be overcome by applying artificial intelligence to diagnose PD. Many studies have also proposed the implementation of computer-aided diagnosis for the detection of PD. This systematic review comprehensively analyzed all appropriate algorithms for detecting and assessing PD based on the literature from 2012 to 2023 which are conducted as per PRISMA model. This review focused on motor symptoms, namely handwriting dynamics, voice impairments and gait, multimodal features, and brain observation using single photon emission computed tomography, magnetic resonance and electroencephalogram signals. The significant challenges are critically analyzed, and appropriate recommendations are provided. The critical discussion of this review article can be helpful in today's PD community in such a way that it allows clinicians to provide proper treatment and timely medication.

2.
Front Comput Neurosci ; 17: 1038636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814932

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that causes memory degradation and cognitive function impairment in elderly people. The irreversible and devastating cognitive decline brings large burdens on patients and society. So far, there is no effective treatment that can cure AD, but the process of early-stage AD can slow down. Early and accurate detection is critical for treatment. In recent years, deep-learning-based approaches have achieved great success in Alzheimer's disease diagnosis. The main objective of this paper is to review some popular conventional machine learning methods used for the classification and prediction of AD using Magnetic Resonance Imaging (MRI). The methods reviewed in this paper include support vector machine (SVM), random forest (RF), convolutional neural network (CNN), autoencoder, deep learning, and transformer. This paper also reviews pervasively used feature extractors and different types of input forms of convolutional neural network. At last, this review discusses challenges such as class imbalance and data leakage. It also discusses the trade-offs and suggestions about pre-processing techniques, deep learning, conventional machine learning methods, new techniques, and input type selection.

3.
Comput Intell Neurosci ; 2023: 4208231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756163

RESUMO

Cardiac health diseases are one of the key causes of death around the globe. The number of heart patients has considerably increased during the pandemic. Therefore, it is crucial to assess and analyze the medical and cardiac images. Deep learning architectures, specifically convolutional neural networks have profoundly become the primary choice for the assessment of cardiac medical images. The left ventricle is a vital part of the cardiovascular system where the boundary and size perform a significant role in the evaluation of cardiac function. Due to automatic segmentation and good promising results, the left ventricle segmentation using deep learning has attracted a lot of attention. This article presents a critical review of deep learning methods used for the left ventricle segmentation from frequently used imaging modalities including magnetic resonance images, ultrasound, and computer tomography. This study also demonstrates the details of the network architecture, software, and hardware used for training along with publicly available cardiac image datasets and self-prepared dataset details incorporated. The summary of the evaluation matrices with results used by different researchers is also presented in this study. Finally, all this information is summarized and comprehended in order to assist the readers to understand the motivation and methodology of various deep learning models, as well as exploring potential solutions to future challenges in LV segmentation.


Assuntos
Aprendizado Profundo , Cardiopatias , Humanos , Ventrículos do Coração/diagnóstico por imagem , Coração , Redes Neurais de Computação , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
4.
Life (Basel) ; 13(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36676073

RESUMO

The segmentation of the left ventricle (LV) is one of the fundamental procedures that must be performed to obtain quantitative measures of the heart, such as its volume, area, and ejection fraction. In clinical practice, the delineation of LV is still often conducted semi-automatically, leaving it open to operator subjectivity. The automatic LV segmentation from echocardiography images is a challenging task due to poorly defined boundaries and operator dependency. Recent research has demonstrated that deep learning has the capability to employ the segmentation process automatically. However, the well-known state-of-the-art segmentation models still lack in terms of accuracy and speed. This study aims to develop a single-stage lightweight segmentation model that precisely and rapidly segments the LV from 2D echocardiography images. In this research, a backbone network is used to acquire both low-level and high-level features. Two parallel blocks, known as the spatial feature unit and the channel feature unit, are employed for the enhancement and improvement of these features. The refined features are merged by an integrated unit to segment the LV. The performance of the model and the time taken to segment the LV are compared to other established segmentation models, DeepLab, FCN, and Mask RCNN. The model achieved the highest values of the dice similarity index (0.9446), intersection over union (0.8445), and accuracy (0.9742). The evaluation metrics and processing time demonstrate that the proposed model not only provides superior quantitative results but also trains and segments the LV in less time, indicating its improved performance over competing segmentation models.

5.
Front Psychiatry ; 13: 1042641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532166

RESUMO

Background: The importance of strategies and services by caregivers and family members substantially impact the psychological and emotional wellbeing of autistic children. The rapid research developments in clinical and non-clinical methods benefit the features of autistic children. Among various internal and external factors, the influence of the built environment also impacts the characteristics of autistic children. This study investigates primarily the psychological effect of light and colors on the mood and behavior of autistic children to identify the most favorable and preferred indoor lights and color shades. Methods: A questionnaire survey was conducted at an autism center among autistic children and their parents. This study included autistic children aged between 6 and 16 (45 males, 42 females, mean age 8.7 years, standard deviation 2.3). Eighty-seven participants were involved in the survey to determine the sensory perceptions, intolerance, preferences, and sensitivities of children with an autism spectrum disorder toward colors and lighting. The margin of error at the statistical analysis's 95% confidence level is ± 0.481. Results: As per this case report, the children have various color preferences and respond differently to different shades. Different hues have varying effects on autistic children, with many neutral tones and mellow shades proven to be autistic-friendly with their calming and soothing effect, while bright, bold, and intense colors are refreshing and stimulating. The stimulus of bright-lighting causes behavioral changes in autistic children prone to light sensitivity. Conclusion: The insights gained from this interaction with parents and caretakers of autistic children could be helpful for designers to incorporate specific autistic-friendly design elements that make productive interior spaces. A complete understanding of the effect of factors like color and lighting on the learning ability and engagement of autistic children in an indoor environment is essential for designers and clinicians. The main findings of this study could be helpful for a designer and clinicians to address designing an autism-friendly built environment with a color palette and lighting scheme conducive to their wellbeing and to maximize their cognitive functioning.

7.
Front Public Health ; 10: 981019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091529

RESUMO

One of the primary factors contributing to death across all age groups is cardiovascular disease. In the analysis of heart function, analyzing the left ventricle (LV) from 2D echocardiographic images is a common medical procedure for heart patients. Consistent and accurate segmentation of the LV exerts significant impact on the understanding of the normal anatomy of the heart, as well as the ability to distinguish the aberrant or diseased structure of the heart. Therefore, LV segmentation is an important and critical task in medical practice, and automated LV segmentation is a pressing need. The deep learning models have been utilized in research for automatic LV segmentation. In this work, three cutting-edge convolutional neural network architectures (SegNet, Fully Convolutional Network, and Mask R-CNN) are designed and implemented to segment the LV. In addition, an echocardiography image dataset is generated, and the amount of training data is gradually increased to measure segmentation performance using evaluation metrics. The pixel's accuracy, precision, recall, specificity, Jaccard index, and dice similarity coefficients are applied to evaluate the three models. The Mask R-CNN model outperformed the other two models in these evaluation metrics. As a result, the Mask R-CNN model is used in this study to examine the effect of training data. For 4,000 images, the network achieved 92.21% DSC value, 85.55% Jaccard index, 98.76% mean accuracy, 96.81% recall, 93.15% precision, and 96.58% specificity value. Relatively, the Mask R-CNN outperformed other architectures, and the performance achieves stability when the model is trained using more than 4,000 training images.


Assuntos
Aprendizado Profundo , Ventrículos do Coração , Ventrículos do Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
8.
Front Aging Neurosci ; 14: 908143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912076

RESUMO

Objective: Deep learning algorithms have long been involved in the diagnosis of severe neurological disorders that interfere with patients' everyday tasks, such as Parkinson's disease (PD). The most effective imaging modality for detecting the condition is DaTscan, a variety of single-photon emission computerized tomography (SPECT) imaging method. The goal is to create a convolutional neural network that can specifically identify the region of interest following feature extraction. Methods: The study comprised a total of 1,390 DaTscan imaging groups with PD and normal classes. The architecture of DenseNet-121 is leveraged with a soft-attention block added before the final classification layer. For visually analyzing the region of interest (ROI) from the images after classification, Soft Attention Maps and feature map representation are used. Outcomes: The model obtains an overall accuracy of 99.2% and AUC-ROC score 99%. A sensitivity of 99.2%, specificity of 99.4% and f1-score of 99.1% is achieved that surpasses all prior research findings. Soft-attention map and feature map representation aid in highlighting the ROI, with a specific attention on the putamen and caudate regions. Conclusion: With the deep learning framework adopted, DaTscan images reveal the putamen and caudate areas of the brain, which aid in the distinguishing of normal and PD cohorts with high accuracy and sensitivity.

9.
Front Public Health ; 10: 898254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677770

RESUMO

In this review, current studies on hospital readmission due to infection of COVID-19 were discussed, compared, and further evaluated in order to understand the current trends and progress in mitigation of hospital readmissions due to COVID-19. Boolean expression of ("COVID-19" OR "covid19" OR "covid" OR "coronavirus" OR "Sars-CoV-2") AND ("readmission" OR "re-admission" OR "rehospitalization" OR "rehospitalization") were used in five databases, namely Web of Science, Medline, Science Direct, Google Scholar and Scopus. From the search, a total of 253 articles were screened down to 26 articles. In overall, most of the research focus on readmission rates than mortality rate. On the readmission rate, the lowest is 4.2% by Ramos-Martínez et al. from Spain, and the highest is 19.9% by Donnelly et al. from the United States. Most of the research (n = 13) uses an inferential statistical approach in their studies, while only one uses a machine learning approach. The data size ranges from 79 to 126,137. However, there is no specific guide to set the most suitable data size for one research, and all results cannot be compared in terms of accuracy, as all research is regional studies and do not involve data from the multi region. The logistic regression is prevalent in the research on risk factors of readmission post-COVID-19 admission, despite each of the research coming out with different outcomes. From the word cloud, age is the most dominant risk factor of readmission, followed by diabetes, high length of stay, COPD, CKD, liver disease, metastatic disease, and CAD. A few future research directions has been proposed, including the utilization of machine learning in statistical analysis, investigation on dominant risk factors, experimental design on interventions to curb dominant risk factors and increase the scale of data collection from single centered to multi centered.


Assuntos
COVID-19 , Readmissão do Paciente , COVID-19/epidemiologia , Humanos , Modelos Logísticos , Aprendizado de Máquina , Fatores de Risco , Estados Unidos
10.
Front Aging Neurosci ; 14: 876202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721012

RESUMO

Alzheimer's disease (AD) is an irreversible neurological disorder that affects the vast majority of dementia cases, leading patients to experience gradual memory loss and cognitive function decline. Despite the lack of a cure, early detection of Alzheimer's disease permits the provision of preventive medication to slow the disease's progression. The objective of this project is to develop a computer-aided method based on a deep learning model to distinguish Alzheimer's disease (AD) from cognitively normal and its early stage, mild cognitive impairment (MCI), by just using structural MRI (sMRI). To attain this purpose, we proposed a multiclass classification method based on 3D T1-weight brain sMRI images from the ADNI database. Axial brain images were extracted from 3D MRI and fed into the convolutional neural network (CNN) for multiclass classification. Three separate models were tested: a CNN built from scratch, VGG-16, and ResNet-50. As a feature extractor, the VGG-16 and ResNet-50 convolutional bases trained on the ImageNet dataset were employed. To achieve classification, a new densely connected classifier was implemented on top of the convolutional bases.

11.
Comput Intell Neurosci ; 2022: 2801663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634043

RESUMO

Intraoperative neuromonitoring (IONM) has been used to help monitor the integrity of the nervous system during spine surgery. Transcranial motor-evoked potential (TcMEP) has been used lately for lower lumbar surgery to prevent nerve root injuries and also to predict positive functional outcomes of patients. There were a number of studies that proved that the TcMEP signal's improvement is significant towards positive functional outcomes of patients. In this paper, we explored the possibilities of using a machine learning approach to TcMEP signal to predict positive functional outcomes of patients. With 55 patients who underwent various types of lumbar surgeries, the data were divided into 70 : 30 and 80 : 20 ratios for training and testing of the machine learning models. The highest sensitivity and specificity were achieved by Fine KNN of 80 : 20 ratio with 87.5% and 33.33%, respectively. In the meantime, we also tested the existing improvement criteria presented in the literature, and 50% of TcMEP improvement criteria achieved 83.33% sensitivity and 75% specificity. But the rigidness of this threshold method proved unreliable in this study when different datasets were used as the sensitivity and specificity dropped. The proposed method by using machine learning has more room to advance with a larger dataset and various signals' features to choose from.


Assuntos
Potencial Evocado Motor , Procedimentos Neurocirúrgicos , Potencial Evocado Motor/fisiologia , Humanos , Aprendizado de Máquina , Procedimentos Neurocirúrgicos/métodos , Sensibilidade e Especificidade
12.
Comput Intell Neurosci ; 2022: 1847981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602622

RESUMO

Plaque deposits in the carotid artery are the major cause of stroke and atherosclerosis. Ultrasound imaging is used as an early indicator of disease progression. Classification of the images to identify plaque presence and intima-media thickness (IMT) by machine learning algorithms requires features extracted from the images. A total of 361 images were used for feature extraction, which will assist in further classification of the carotid artery. This study presents the extraction of 65 features, which constitute of shape, texture, histogram, correlogram, and morphology features. Principal component analysis (PCA)-based feature selection is performed, and the 22 most significant features, which will improve the classification accuracy, are selected. Naive Bayes algorithm and dynamic learning vector quantization (DLVQ)-based machine learning classifications are performed with the extracted and selected features, and analysis is performed.


Assuntos
Espessura Intima-Media Carotídea , Aprendizado de Máquina , Algoritmos , Teorema de Bayes , Artérias Carótidas/diagnóstico por imagem
13.
J Healthc Eng ; 2022: 3039624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535220

RESUMO

Phonocardiogram (PCG), the graphic recording of heart signals, is analyzed to determine the cardiac mechanical function. In the recording of PCG signals, the major problem encountered is the corruption by surrounding noise signals. The noise-corrupted signal cannot be analyzed and used for advanced processing. Therefore, there is a need to denoise these signals before being employed for further processing. Adaptive Noise Cancellers are best suited for signal denoising applications and can efficiently recover the corrupted PCG signal. This paper introduces an optimal adaptive filter structure using a Sign Error LMS algorithm to estimate a noise-free signal with high accuracy. In the proposed filter structure, a noisy signal is passed through a multistage cascaded adaptive filter structure. The number of stages to be cascaded and the step size for each stage are adjusted automatically. The proposed Variable Stage Cascaded Sign Error LMS (SELMS) adaptive filter model is tested for denoising the fetal PCG signal taken from the SUFHS database and corrupted by Gaussian and colored pink noise signals of different input SNR levels. The proposed filter model is also tested for pathological PCG signals in the presence of Gaussian noise. The simulation results prove that the proposed filter model performs remarkably well and provides 8-10 dB higher SNR values in a Gaussian noise environment and 2-3 dB higher SNR values in the presence of colored noise than the existing cascaded LMS filter models. The MSE values are improved by 75-80% in the case of Gaussian noise. Further, the correlation between the clean signal and its estimate after denoising is more than 0.99. The PSNR values are improved by 7 dB in a Gaussian noise environment and 1-2 dB in the presence of pink noise. The advantage of using the SELMS adaptive filter in the proposed filter model is that it offers a cost-effective hardware implementation of Adaptive Noise Canceller with high accuracy.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Humanos , Ruído , Distribuição Normal , Razão Sinal-Ruído
14.
Comput Intell Neurosci ; 2022: 9167707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498184

RESUMO

In the late December of 2019, a novel coronavirus was discovered in Wuhan, China. In March 2020, WHO announced this epidemic had become a global pandemic and that the novel coronavirus may be mild to most people. However, some people may experience a severe illness that results in hospitalization or maybe death. COVID-19 classification remains challenging due to the ambiguity and similarity with other known respiratory diseases such as SARS, MERS, and other viral pneumonia. The typical symptoms of COVID-19 are fever, cough, chills, shortness of breath, loss of smell and taste, headache, sore throat, chest pains, confusion, and diarrhoea. This research paper suggests the concept of transfer learning using the deterministic algorithm in all binary classification models and evaluates the performance of various CNN architectures. The datasets of 746 CT images of COVID-19 and non-COVID-19 were divided for training, validation, and testing. Various augmentation techniques were applied to increase the number of datasets except for testing images. The images were then pretrained using CNN to obtain a binary class. ResNeXt101 and ResNet152 have the best F1 score of 0.978 and 0.938, whereas GoogleNet has an F1 score of 0.762. ResNeXt101 and ResNet152 have an accuracy of 97.81% and 93.80%. ResNeXt101, DenseNet201, and ResNet152 have 95.71%, 93.81%, and 90% sensitivity, whereas ResNeXt101, ResNet101, and ResNet152 have 100%, 99.58%, and 98.33 specificity, respectively.


Assuntos
COVID-19 , COVID-19/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X
15.
J Healthc Eng ; 2022: 5998042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251572

RESUMO

Pulmonary medical image analysis using image processing and deep learning approaches has made remarkable achievements in the diagnosis, prognosis, and severity check of lung diseases. The epidemic of COVID-19 brought out by the novel coronavirus has triggered a critical need for artificial intelligence assistance in diagnosing and controlling the disease to reduce its effects on people and global economies. This study aimed at identifying the various COVID-19 medical imaging analysis models proposed by different researchers and featured their merits and demerits. It gives a detailed discussion on the existing COVID-19 detection methodologies (diagnosis, prognosis, and severity/risk detection) and the challenges encountered for the same. It also highlights the various preprocessing and post-processing methods involved to enhance the detection mechanism. This work also tries to bring out the different unexplored research areas that are available for medical image analysis and how the vast research done for COVID-19 can advance the field. Despite deep learning methods presenting high levels of efficiency, some limitations have been briefly described in the study. Hence, this review can help understand the utilization and pros and cons of deep learning in analyzing medical images.


Assuntos
Inteligência Artificial , COVID-19 , COVID-19/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , SARS-CoV-2 , Tomografia Computadorizada por Raios X
16.
J Healthc Eng ; 2022: 4138666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222885

RESUMO

Knee osteoarthritis (OA) is a deliberating joint disorder characterized by cartilage loss that can be captured by imaging modalities and translated into imaging features. Observing imaging features is a well-known objective assessment for knee OA disorder. However, the variety of imaging features is rarely discussed. This study reviews knee OA imaging features with respect to different imaging modalities for traditional OA diagnosis and updates recent image-based machine learning approaches for knee OA diagnosis and prognosis. Although most studies recognized X-ray as standard imaging option for knee OA diagnosis, the imaging features are limited to bony changes and less sensitive to short-term OA changes. Researchers have recommended the usage of MRI to study the hidden OA-related radiomic features in soft tissues and bony structures. Furthermore, ultrasound imaging features should be explored to make it more feasible for point-of-care diagnosis. Traditional knee OA diagnosis mainly relies on manual interpretation of medical images based on the Kellgren-Lawrence (KL) grading scheme, but this approach is consistently prone to human resource and time constraints and less effective for OA prevention. Recent studies revealed the capability of machine learning approaches in automating knee OA diagnosis and prognosis, through three major tasks: knee joint localization (detection and segmentation), classification of OA severity, and prediction of disease progression. AI-aided diagnostic models improved the quality of knee OA diagnosis significantly in terms of time taken, reproducibility, and accuracy. Prognostic ability was demonstrated by several prediction models in terms of estimating possible OA onset, OA deterioration, progressive pain, progressive structural change, progressive structural change with pain, and time to total knee replacement (TKR) incidence. Despite research gaps, machine learning techniques still manifest huge potential to work on demanding tasks such as early knee OA detection and estimation of future disease events, as well as fundamental tasks such as discovering the new imaging features and establishment of novel OA status measure. Continuous machine learning model enhancement may favour the discovery of new OA treatment in future.


Assuntos
Osteoartrite do Joelho , Humanos , Articulação do Joelho/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem , Dor , Reprodutibilidade dos Testes
17.
Front Public Health ; 10: 1030656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699937

RESUMO

Assistive technology for the differently abled and older adults has made remarkable achievements in providing rehabilitative, adaptive, and assistive devices. It provides huge assistance for people with physical impairments to lead a better self-reliant daily life, in terms of mobility, education, rehabilitation, etc. This technology ranges from simple hand-held devices to complex robotic accessories which promote the individual's independence. This study aimed at identifying the assistance required by differently-abled individuals, and the solutions proposed by different researchers, and reviewed their merits and demerits. It provides a detailed discussion on the state of art assistive technologies, their applications, challenges, types, and their usage for rehabilitation. The study also identifies different unexplored research areas related to assistive technology that can improve the daily life of individuals and advance the field. Despite their high usage, assistive technologies have some limitations which have been briefly described in the study. This review, therefore, can help understand the utilization, and pros and cons of assistive devices in rehabilitation engineering and assistive technologies.


Assuntos
Reabilitação , Tecnologia Assistiva , Idoso , Humanos , Pessoas com Deficiência , Reabilitação/instrumentação
18.
J Healthc Eng ; 2021: 9208138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765104

RESUMO

Quality of care data has gained transparency captured through various measurements and reporting. Readmission measure is especially related to unfavorable patient outcomes that directly bends the curve of healthcare cost. Under the Hospital Readmission Reduction Program, payments to hospitals were reduced for those with excessive 30-day rehospitalization rates. These penalties have intensified efforts from hospital stakeholders to implement strategies to reduce readmission rates. One of the key strategies is the deployment of predictive analytics stratified by patient population. The recent research in readmission model is focused on making its prediction more accurate. As cost-saving improvements through artificial intelligent-based health solutions are expected, the broad economic impact of such digital tool remains unknown. Meanwhile, reducing readmission rate is associated with increased operating expenses due to targeted interventions. The increase in operating margin can surpass native readmission cost. In this paper, we propose a quantized evaluation metric to provide a methodological mean in assessing whether a predictive model represents cost-effective way of delivering healthcare. Herein, we evaluate the impact machine learning has had on transitional care and readmission with proposed metric. The final model was estimated to produce net healthcare savings at over $1 million given a 50% rate of successfully preventing a readmission.


Assuntos
Hospitais , Readmissão do Paciente , Análise Custo-Benefício , Custos de Cuidados de Saúde , Humanos
19.
Comput Intell Neurosci ; 2021: 4931437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804143

RESUMO

Osteoarthritis (OA), especially knee OA, is the most common form of arthritis, causing significant disability in patients worldwide. Manual diagnosis, segmentation, and annotations of knee joints remain as the popular method to diagnose OA in clinical practices, although they are tedious and greatly subject to user variation. Therefore, to overcome the limitations of the commonly used method as above, numerous deep learning approaches, especially the convolutional neural network (CNN), have been developed to improve the clinical workflow efficiency. Medical imaging processes, especially those that produce 3-dimensional (3D) images such as MRI, possess ability to reveal hidden structures in a volumetric view. Acknowledging that changes in a knee joint is a 3D complexity, 3D CNN has been employed to analyse the joint problem for a more accurate diagnosis in the recent years. In this review, we provide a broad overview on the current 2D and 3D CNN approaches in the OA research field. We reviewed 74 studies related to classification and segmentation of knee osteoarthritis from the Web of Science database and discussed the various state-of-the-art deep learning approaches proposed. We highlighted the potential and possibility of 3D CNN in the knee osteoarthritis field. We concluded by discussing the possible challenges faced as well as the potential advancements in adopting 3D CNNs in this field.


Assuntos
Aprendizado Profundo , Osteoartrite do Joelho , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Osteoartrite do Joelho/diagnóstico por imagem
20.
Biomed Tech (Berl) ; 66(5): 503-514, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33946135

RESUMO

Non-invasive extraction of fetal electrocardiogram (FECG) by processing the abdominal signals is emerging as a promising approach in the areas of obstetrics and gynecology. This paper presents a two-stage improved non-linear adaptive filter for FECG extraction. The reference input to the adaptive noise canceler (ANC) is first processed using an adaptive neuro-fuzzy inference system (ANFIS) to estimate the non-linear maternal component in abdominal signals. A parallel sub-filter (PSF) ANC is proposed to assess the fetal ECG from the abdominal signal. The PSF-ANC decomposes a single adaptive filter into multiple sub-filters to improve the convergence performance. The filter coefficients of PSF-ANC adaptively obtained using normalised least mean square algorithm by minimizing the mean square error. Different error and common error algorithms are proposed based on the computation of the error signal. A synthetic data from the FECG synthetic database is used to evaluate the convergence performance. Two real-time data from the Daisy database and the Non-invasive FECG database from Physionet are used to evaluate the proposed ANFIS-PSF's performance qualitative and quantitatively. The results justify the performance improvement of proposed ANFIS-PSF ANC compared to the state of art techniques. The proposed scheme achieves a sensitivity of 97.92%, 94.52% accuracy, a positive predictive value of 94.66%, and an F1 score of 96.12%.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Abdome , Algoritmos , Feminino , Humanos , Gravidez , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...