Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med J Armed Forces India ; 79(Suppl 1): S276-S279, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144652

RESUMO

Drug-induced liver injury (DILI) is an unwarranted problem and has been a scourge in the treatment of tuberculosis (TB) infection in general and children in particular. Usually, when the Antituberculosis treatment (ATT) regime is temporarily interrupted and modified, DILI subsides, and the whole treatment can be completed under supervision. We report a case of ATT-induced DILI not improving despite modification in the ATT regime, which ultimately led to the revealing of a yet unreported constellation of syndromes that included Wilson Disease, 46 XX gonadal dysgenesis, and Mayer Rokitansky Kuster Hauser (MRKH) Syndrome.

2.
Eur Rev Med Pharmacol Sci ; 26(13): 4881-4883, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35856380

RESUMO

OBJECTIVE: In the coronavirus disease 2019 (COVID-19) pandemic, a spectrum of sequelae affecting different organs has been reported. Of these, the ones affecting the thyroid gland have been reported, especially in the adults. CASE REPORT: We present previously healthy twin adolescents with no history of thyroid disease, presenting with signs and symptoms of hypothyroidism after recovery from mild COVID-19 infection. Their investigations were consistent with auto-immune thyroiditis with primary hypothyroidism, showing markedly elevated thyroid-stimulating hormone (TSH), suppressed FT4 levels, positive anti-thyroid peroxidase antibody and anti-thyroglobulin antibody titres. They were treated accordingly and showed quick clinical improvement in symptoms. CONCLUSIONS: This case report demonstrates that COVID-19 infection can be temporally associated with primary hypothyroidism in genetically predisposed children adding more to the growing list of sequelae especially in children.


Assuntos
COVID-19 , Hipotireoidismo , Tireoidite , Adolescente , Adulto , Criança , Progressão da Doença , Humanos , SARS-CoV-2 , Tireotropina
3.
Dev Cell ; 56(14): 2073-2088.e3, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34214491

RESUMO

Crossing over is essential for chromosome segregation during meiosis. Protein modification by SUMO is implicated in crossover control, but pertinent targets have remained elusive. Here we identify Msh4 as a target of SUMO-mediated crossover regulation. Msh4 and Msh5 constitute the MutSγ complex, which stabilizes joint-molecule (JM) recombination intermediates and facilitates their resolution into crossovers. Msh4 SUMOylation enhances these processes to ensure that each chromosome pair acquires at least one crossover. Msh4 is directly targeted by E2 conjugase Ubc9, initially becoming mono-SUMOylated in response to DNA double-strand breaks, then multi/poly-SUMOylated forms arise as homologs fully engage. Mechanistically, SUMOylation fosters interaction between Msh4 and Msh5. We infer that initial SUMOylation of Msh4 enhances assembly of MutSγ in anticipation of JM formation, while secondary SUMOylation may promote downstream functions. Regulation of Msh4 by SUMO is distinct and independent of its previously described stabilization by phosphorylation, defining MutSγ as a hub for crossover control.


Assuntos
Troca Genética , Proteínas de Ligação a DNA/metabolismo , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Núcleo Celular/genética , Segregação de Cromossomos , DNA/genética , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
5.
Nature ; 586(7830): 623-627, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814343

RESUMO

During meiosis, crossover recombination connects homologous chromosomes to direct their accurate segregation1. Defective crossing over causes infertility, miscarriage and congenital disease. Each pair of chromosomes attains at least one crossover via the formation and biased resolution of recombination intermediates known as double Holliday junctions2,3. A central principle of crossover resolution is that the two Holliday junctions are resolved in opposite planes by targeting nuclease incisions to specific DNA strands4. The endonuclease activity of the MutLγ complex has been implicated in the resolution of crossovers5-10, but the mechanisms that activate and direct strand-specific cleavage remain unknown. Here we show that the sliding clamp PCNA is important for crossover-biased resolution. In vitro assays with human enzymes show that PCNA and its loader RFC are sufficient to activate the MutLγ endonuclease. MutLγ is further stimulated by a co-dependent activity of the pro-crossover factors EXO1 and MutSγ, the latter of which binds Holliday junctions11. MutLγ also binds various branched DNAs, including Holliday junctions, but does not show canonical resolvase activity, implying that the endonuclease incises adjacent to junction branch points to achieve resolution. In vivo, RFC facilitates MutLγ-dependent crossing over in budding yeast. Furthermore, PCNA localizes to prospective crossover sites along synapsed chromosomes. These data highlight similarities between crossover resolution and the initiation steps of DNA mismatch repair12,13 and evoke a novel model for crossover-specific resolution of double Holliday junctions during meiosis.


Assuntos
Troca Genética , Endonucleases/metabolismo , Meiose , Proteínas MutL/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , DNA Cruciforme/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Masculino , Camundongos , Proteínas MutS/metabolismo , Ligação Proteica , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 11(1): 3101, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555348

RESUMO

Orderly chromosome segregation is enabled by crossovers between homologous chromosomes in the first meiotic division. Crossovers arise from recombination-mediated repair of programmed DNA double-strand breaks (DSBs). Multiple DSBs initiate recombination, and most are repaired without crossover formation, although one or more generate crossovers on each chromosome. Although the underlying mechanisms are ill-defined, the differentiation and maturation of crossover-specific recombination intermediates requires the cyclin-like CNTD1. Here, we identify PRR19 as a partner of CNTD1. We find that, like CNTD1, PRR19 is required for timely DSB repair and the formation of crossover-specific recombination complexes. PRR19 and CNTD1 co-localise at crossover sites, physically interact, and are interdependent for accumulation, indicating a PRR19-CNTD1 partnership in crossing over. Further, we show that CNTD1 interacts with a cyclin-dependent kinase, CDK2, which also accumulates in crossover-specific recombination complexes. Thus, the PRR19-CNTD1 complex may enable crossover differentiation by regulating CDK2.


Assuntos
Troca Genética/genética , Ciclinas/genética , Quebras de DNA de Cadeia Dupla , Meiose/genética , Animais , Cromossomos/genética , Quinase 2 Dependente de Ciclina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Recombinação Homóloga/genética , Masculino , Camundongos
7.
Mol Cell ; 78(1): 168-183.e5, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32130890

RESUMO

Crossover recombination is essential for accurate chromosome segregation during meiosis. The MutSγ complex, Msh4-Msh5, facilitates crossing over by binding and stabilizing nascent recombination intermediates. We show that these activities are governed by regulated proteolysis. MutSγ is initially inactive for crossing over due to an N-terminal degron on Msh4 that renders it unstable by directly targeting proteasomal degradation. Activation of MutSγ requires the Dbf4-dependent kinase Cdc7 (DDK), which directly phosphorylates and thereby neutralizes the Msh4 degron. Genetic requirements for Msh4 phosphorylation indicate that DDK targets MutSγ only after it has bound to nascent joint molecules (JMs) in the context of synapsing chromosomes. Overexpression studies confirm that the steady-state level of Msh4, not phosphorylation per se, is the critical determinant for crossing over. At the DNA level, Msh4 phosphorylation enables the formation and crossover-biased resolution of double-Holliday Junction intermediates. Our study establishes regulated protein degradation as a fundamental mechanism underlying meiotic crossing over.


Assuntos
Troca Genética , Proteínas de Ligação a DNA/metabolismo , Meiose/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Proteínas de Ligação a DNA/química , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/química
8.
J Mol Biol ; 432(2): 324-342, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31628946

RESUMO

Methylation of genomic DNA can influence the transcription profile of an organism and may generate phenotypic diversity for rapid adaptation in a dynamic environment. M.HpyAXI is a Type III DNA methyltransferase present in Helicobacter pylori and is upregulated at low pH. This enzyme may alter the expression of critical genes to ensure the survival of this pathogen at low pH inside the human stomach. M.HpyAXI methylates the adenine in the target sequence (5'-GCAG-3') and shows maximal activity at pH 5.5. Type III DNA methyltransferases are found to form an inverted dimer in the functional form. We observe that M.HpyAXI forms a nonfunctional dimer at pH 8.0 that is incapable of DNA binding and methylation activity. However, at pH 5.5, two such dimers associate to form a tetramer that now includes two functional dimers that can bind and methylate the target DNA sequence. Overall, we observe that the pH-dependent tetramerization of M.HpyAXI ensures that the enzyme is licensed to act only in the presence of acid stress.


Assuntos
Metilação de DNA/genética , Infecções por Helicobacter/genética , Helicobacter pylori/enzimologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Ácidos/metabolismo , Adenina/química , Adenina/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Infecções por Helicobacter/enzimologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Humanos , Concentração de Íons de Hidrogênio , Cinética , Multimerização Proteica/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , Estresse Fisiológico/genética , Especificidade por Substrato
9.
Nucleic Acids Res ; 46(1): 256-266, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29182773

RESUMO

The DNA mismatch repair (MMR) pathway removes errors that appear during genome replication. MutS is the primary mismatch sensor and forms an asymmetric dimer that encircles DNA to bend it to scan for mismatches. The mechanism utilized to load DNA into the central tunnel was unknown and the origin of the force required to bend DNA was unclear. We show that, in absence of DNA, MutS forms a symmetric dimer wherein a gap exists between the monomers through which DNA can enter the central tunnel. The comparison with structures of MutS-DNA complexes suggests that the mismatch scanning monomer (Bm) will move by nearly 50 Å to associate with the other monomer (Am). Consequently, the N-terminal domains of both monomers will press onto DNA to bend it. The proposed mechanism of toroid formation evinces that the force required to bend DNA arises primarily due to the movement of Bm and hence, the MutS dimer acts like a pair of pliers to bend DNA. We also shed light on the allosteric mechanism that influences the expulsion of adenosine triphosphate from Am on DNA binding. Overall, this study provides mechanistic insight regarding the primary event in MMR i.e. the assembly of the MutS-DNA complex.


Assuntos
Proteínas de Bactérias/metabolismo , Pareamento Incorreto de Bases , Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA/química , DNA/genética , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Multimerização Proteica
15.
Indian J Psychiatry ; 48(2): 123-5, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20703401

RESUMO

Ganser syndrome is a rare dissociative disorder. It has been reported in association with various functional psychiatric disorders and organic states, most often in patients with head injury and stroke, especially those involving the frontal lobes. The present case of Ganser syndrome had features of hysterical dissociation but was found to have haemorrhage in the temporoparietal region of the dominant hemisphere. The complexities of Ganser syndrome in the presence of an organic lesion with an overwhelming emotional component are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...