Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37883279

RESUMO

Recent advances in high-resolution connectomics provide researchers with access to accurate petascale reconstructions of neuronal circuits and brain networks for the first time. Neuroscientists are analyzing these networks to better understand information processing in the brain. In particular, scientists are interested in identifying specific small network motifs, i.e., repeating subgraphs of the larger brain network that are believed to be neuronal building blocks. Although such motifs are typically small (e.g., 2 - 6 neurons), the vast data sizes and intricate data complexity present significant challenges to the search and analysis process. To analyze these motifs, it is crucial to review instances of a motif in the brain network and then map the graph structure to detailed 3D reconstructions of the involved neurons and synapses. We present Vimo, an interactive visual approach to analyze neuronal motifs and motif chains in large brain networks. Experts can sketch network motifs intuitively in a visual interface and specify structural properties of the involved neurons and synapses to query large connectomics datasets. Motif instances (MIs) can be explored in high-resolution 3D renderings. To simplify the analysis of MIs, we designed a continuous focus&context metaphor inspired by visual abstractions. This allows users to transition from a highly-detailed rendering of the anatomical structure to views that emphasize the underlying motif structure and synaptic connectivity. Furthermore, Vimo supports the identification of motif chains where a motif is used repeatedly (e.g., 2 - 4 times) to form a larger network structure. We evaluate Vimo in a user study and an in-depth case study with seven domain experts on motifs in a large connectome of the fruit fly, including more than 21,000 neurons and 20 million synapses. We find that Vimo enables hypothesis generation and confirmation through fast analysis iterations and connectivity highlighting.

2.
Front Neural Circuits ; 17: 952921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396399

RESUMO

Connectomics is fundamental in propelling our understanding of the nervous system's organization, unearthing cells and wiring diagrams reconstructed from volume electron microscopy (EM) datasets. Such reconstructions, on the one hand, have benefited from ever more precise automatic segmentation methods, which leverage sophisticated deep learning architectures and advanced machine learning algorithms. On the other hand, the field of neuroscience at large, and of image processing in particular, has manifested a need for user-friendly and open source tools which enable the community to carry out advanced analyses. In line with this second vein, here we propose mEMbrain, an interactive MATLAB-based software which wraps algorithms and functions that enable labeling and segmentation of electron microscopy datasets in a user-friendly user interface compatible with Linux and Windows. Through its integration as an API to the volume annotation and segmentation tool VAST, mEMbrain encompasses functions for ground truth generation, image preprocessing, training of deep neural networks, and on-the-fly predictions for proofreading and evaluation. The final goals of our tool are to expedite manual labeling efforts and to harness MATLAB users with an array of semi-automatic approaches for instance segmentation. We tested our tool on a variety of datasets that span different species at various scales, regions of the nervous system and developmental stages. To further expedite research in connectomics, we provide an EM resource of ground truth annotation from four different animals and five datasets, amounting to around 180 h of expert annotations, yielding more than 1.2 GB of annotated EM images. In addition, we provide a set of four pre-trained networks for said datasets. All tools are available from https://lichtman.rc.fas.harvard.edu/mEMbrain/. With our software, our hope is to provide a solution for lab-based neural reconstructions which does not require coding by the user, thus paving the way to affordable connectomics.


Assuntos
Conectoma , Aprendizado Profundo , Animais , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Algoritmos
3.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131600

RESUMO

Connectomics is fundamental in propelling our understanding of the nervous system’s organization, unearthing cells and wiring diagrams reconstructed from volume electron microscopy (EM) datasets. Such reconstructions, on the one hand, have benefited from ever more precise automatic segmentation methods, which leverage sophisticated deep learning architectures and advanced machine learning algorithms. On the other hand, the field of neuroscience at large, and of image processing in particular, has manifested a need for user-friendly and open source tools which enable the community to carry out advanced analyses. In line with this second vein, here we propose mEMbrain, an interactive MATLAB-based software which wraps algorithms and functions that enable labeling and segmentation of electron microscopy datasets in a user-friendly user interface compatible with Linux and Windows. Through its integration as an API to the volume annotation and segmentation tool VAST, mEMbrain encompasses functions for ground truth generation, image preprocessing, training of deep neural networks, and on-the-fly predictions for proofreading and evaluation. The final goals of our tool are to expedite manual labeling efforts and to harness MATLAB users with an array of semi-automatic approaches for instance segmentation. We tested our tool on a variety of datasets that span different species at various scales, regions of the nervous system and developmental stages. To further expedite research in connectomics, we provide an EM resource of ground truth annotation from 4 different animals and 5 datasets, amounting to around 180 hours of expert annotations, yielding more than 1.2 GB of annotated EM images. In addition, we provide a set of 4 pre-trained networks for said datasets. All tools are available from https://lichtman.rc.fas.harvard.edu/mEMbrain/ . With our software, our hope is to provide a solution for lab-based neural reconstructions which does not require coding by the user, thus paving the way to affordable connectomics.

4.
Dev Dyn ; 250(1): 60-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32725855

RESUMO

BACKGROUND: Muscle myofibrils and sarcomeres present exceptional examples of highly ordered cytoskeletal filament arrays, whose distinct spatial organization is an essential aspect of muscle cell functionality. We utilized ultra-structural analysis to investigate the assembly of myofibrils and sarcomeres within developing myotubes of the indirect flight musculature of Drosophila. RESULTS: A temporal sequence composed of three major processes was identified: subdivision of the unorganized cytoplasm of nascent, multi-nucleated myotubes into distinct organelle-rich and filament-rich domains; initial organization of the filament-rich domains into myofibrils harboring nascent sarcomeric units; and finally, maturation of the highly-ordered pattern of sarcomeric thick (myosin-based) and thin (microfilament-based) filament arrays in parallel to myofibril radial growth. Significantly, organized microtubule arrays were present throughout these stages and exhibited dynamic changes in their spatial patterns consistent with instructive roles. Genetic manipulations confirm these notions, and imply specific and critical guidance activities of the microtubule-based cytoskeleton, as well as structural interdependence between the myosin- and actin-based filament arrays. CONCLUSIONS: Our observations highlight a surprisingly significant, behind-the-scenes role for microtubules in establishment of myofibril and sarcomere spatial patterns and size, and provide a detailed account of the interplay between major cytoskeletal elements in generating these essential contractile myogenic units.


Assuntos
Citoesqueleto/metabolismo , Drosophila/crescimento & desenvolvimento , Desenvolvimento Muscular , Pupa/ultraestrutura , Sarcômeros/metabolismo , Animais , Drosophila/ultraestrutura
5.
Semin Cell Dev Biol ; 72: 56-66, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29146144

RESUMO

Myogenesis is a highly orchestrated, complex developmental process by which cell lineages that are mesodermal in origin generate differentiated multinucleate muscle cells as a final product. Considerable insight into the process of myogenesis has been obtained for the embryonic development of the larval muscles of Drosophila. More recently, the postembryonic development of the muscles of the adult fly has become a focus of experimental investigation of myogenesis since specific flight muscles of the fly manifest remarkable similarities to vertebrate muscles in their development and organization. In this review, we catalog some of the milestones in the study of myogenesis in the large adult-specific flight muscles of Drosophila. The identification of mesoderm-derived muscle stem cell lineages, the characterization of the symmetric and asymmetric divisions through which they produce adult-specific myoblasts, the multifaceted processes of myoblast fusion, and the unexpected discovery of quiescent satellite cells that can be activated by injury are discussed. Moreover, the finding that all of these processes incorporate a plethora of signaling interactions with other myogenic cells and with niche-like neighboring tissue is considered. Finally, we briefly point out possible future developments in the area of Drosophila myogenesis that may lead to of new avenues of genetic research into the roles of muscle stem cells in development, disease and aging.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Músculos/metabolismo , Animais , Drosophila/crescimento & desenvolvimento , Modelos Genéticos , Morfogênese/genética , Fibras Musculares Esqueléticas/metabolismo , Músculos/fisiologia , Mioblastos/metabolismo , Regeneração/genética
6.
Elife ; 52016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731794

RESUMO

Actin-based thin filament arrays constitute a fundamental core component of muscle sarcomeres. We have used formation of the Drosophila indirect flight musculature for studying the assembly and maturation of thin-filament arrays in a skeletal muscle model system. Employing GFP-tagged actin monomer incorporation, we identify several distinct phases in the dynamic construction of thin-filament arrays. This sequence includes assembly of nascent arrays after an initial period of intensive microfilament synthesis, followed by array elongation, primarily from filament pointed-ends, radial growth of the arrays via recruitment of peripheral filaments and continuous barbed-end turnover. Using genetic approaches we have identified Fhos, the single Drosophila homolog of the FHOD sub-family of formins, as a primary and versatile mediator of IFM thin-filament organization. Localization of Fhos to the barbed-ends of the arrays, achieved via a novel N-terminal domain, appears to be a critical aspect of its sarcomeric roles.


Assuntos
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Substâncias Macromoleculares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Multimerização Proteica , Sarcômeros/metabolismo , Actinas/genética , Animais , Forminas , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética
7.
Dev Cell ; 38(3): 291-304, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505416

RESUMO

Indirect flight muscles (IFMs) in Drosophila are generated during pupariation by fusion of hundreds of myoblasts with larval muscle templates (myotubes). Live observation of these muscles during the fusion process revealed multiple long actin-based protrusions that emanate from the myotube surface and require Enabled and IRSp53 for their generation and maintenance. Fusion is blocked when formation of these filopodia is compromised. While filopodia are not required for the signaling process underlying critical myoblast cell-fate changes prior to fusion, myotube-myoblast adhesion appears to be filopodia dependent. Without filopodia, close apposition between the cell membranes is not achieved, the cell-adhesion molecule Duf is not recruited to the myotube surface, and adhesion-dependent actin foci do not form. We therefore propose that the filopodia are necessary to prime the heterotypic adhesion process between the two cell types, possibly by recruiting the cell-adhesion molecule Sns to discrete patches on the myoblast cell surface.


Assuntos
Adesão Celular/fisiologia , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Pseudópodes/fisiologia , Actinas/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Fusão Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/fisiologia
8.
J Cell Biol ; 211(1): 191-203, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26459604

RESUMO

Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell-cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast-myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell-cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process.


Assuntos
Drosophila melanogaster/citologia , Mioblastos/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Actinas/ultraestrutura , Animais , Adesão Celular , Comunicação Celular , Fusão Celular , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/metabolismo , Voo Animal , Músculos/citologia , Mioblastos/ultraestrutura
9.
Dev Biol ; 383(2): 275-84, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24051228

RESUMO

One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24h of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis.


Assuntos
Abdome/crescimento & desenvolvimento , Apoptose , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/metabolismo , Metamorfose Biológica , Músculos/metabolismo , Músculos/patologia , Transdução de Sinais , Abdome/patologia , Músculos Abdominais/enzimologia , Músculos Abdominais/metabolismo , Músculos Abdominais/patologia , Músculos Abdominais/ultraestrutura , Animais , Autofagia , Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/ultraestrutura , Epistasia Genética , Larva/metabolismo , Larva/ultraestrutura , Músculos/enzimologia , Músculos/ultraestrutura , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...