Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Meas ; 44(2)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36638534

RESUMO

Objective. Low frequency cardiovascular vibrations detectable on the chest surface (termed seismocardiography or SCG) may be useful for non-invasive diagnosis and monitoring of various cardiovascular conditions. A potential limitation of using SCG for longitudinal patient monitoring is the existence of intra-subject variability, which can contribute to errors in calculating SCG features. Improved understanding of the contribution of intra-subject variability sources may lead to improved SCG utility. This study aims to quantify postural and longitudinal SCG variability in healthy resting subjects during normal breathing.Approach. SCG and ECG signals were longitudinally acquired in 19 healthy subjects at different postures (supine, 45° head up, and sitting) during five recording sessions over five months. SCG cycles were segmented using the ECG R wave. Unsupervised machine learning was used to reduce SCG variability due to respiration by grouping the SCG signals into two clusters with minimized intra-cluster waveform heterogeneity. Several SCG features were assessed at different postures and longitudinally.Main results. SCG waveform morphological variability was calculated within each cluster (intra-cluster) and between two clusters (inter-cluster) at each posture and data collection session. The variabilities were significantly different between the supine and sitting but not between supine and 45° postures. For the 45° and sitting postures, the intra-cluster variability was not significantly different, while the inter-cluster variability difference was significant. The energy ratio between different frequency bands to total spectral energy in 0.5-50 Hz were calculated and were comparable for all postures. The combined cardiac timing intervals from the two clusters showed significant variation with postural changes. There was significant heart rate difference between the clusters and between postural positions. The SCG features were compared between longitudinal sessions and all features were not significantly different,Significance. Several SCG features significantly varied with posture suggesting that posture needs to be specified when comparing SCG changes over time. Longitudinally comparable SCG feature values suggests that significant longitudinal differences, if observed, may reflect true alternations in the cardiac functioning over time.


Assuntos
Arritmias Cardíacas , Coração , Humanos , Coração/fisiologia , Respiração , Monitorização Fisiológica , Frequência Cardíaca/fisiologia , Eletrocardiografia/métodos
2.
Sci Rep ; 11(1): 21957, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753976

RESUMO

Neurological conditions such as traumatic brain injury (TBI) and hydrocephalus may lead to intracranial pressure (ICP) elevation. Current diagnosis methods rely on direct pressure measurement, while CT, MRI and other expensive imaging may be used. However, these invasive or expensive testing methods are often delayed because symptoms of elevated ICP are non-specific. Invasive methods, such as intraventricular catheter, subdural screw, epidural sensor, lumbar puncture, are associated with an increased risk of infection and hemorrhage. On the other hand, noninvasive, low-cost, accurate methods of ICP monitoring can help avoid risks and reduce costs while expediting diagnosis and treatment. The current study proposes and evaluates a novel method for noninvasive ICP monitoring using tympanic membrane pulsation (TMp). These signals are believed to be transmitted from ICP to the auditory system through the cochlear aqueduct. Fifteen healthy subjects were recruited and TMp signals were acquired noninvasively while the subjects performed maneuvers that are known to change ICP. A custom made system utilizing a stethoscope headset and a pressure transducer was used to perform these measurements. Maneuvers included head-up-tilt, head-down-tilt and hyperventilation. When elevated ICP was induced, significant TMp waveform morphological changes were observed in each subject (p < 0.01). These changes include certain waveform slopes and high frequency wave features. The observed changes were reversed by the maneuvers that decreased ICP (p < .01). The study results suggest that TMp waveform measurement and analysis may offer an inexpensive, noninvasive, accurate tool for detection and monitoring of ICP elevations. Further studies are warranted to validate this technique in patients with pathologically elevated ICP.


Assuntos
Hipertensão Intracraniana/diagnóstico por imagem , Membrana Timpânica/fisiologia , Adulto , Lesões Encefálicas Traumáticas/complicações , Feminino , Humanos , Hipertensão Intracraniana/etiologia , Imageamento por Ressonância Magnética , Masculino , Monitorização Fisiológica/métodos , Adulto Jovem
3.
Cureus ; 13(3): e13865, 2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33859914

RESUMO

Introduction Minimally invasive intracranial pressure (ICP) screening has long been desired by neurosurgeons. A novel approach deriving ICP from tympanic membrane (TM) pulsation may offer the solution. The ICP waveform appears to be transmitted to the TM by the cochlear aqueduct. The resulting TM infrasonic pulsations can be measured by certain sensors. Elevated ICP alters brain compliance, which appears to yield slower rise times of the TM pulsation waveform. Measurement of this change may be useful in screening for elevated ICP. This paper investigates one such technique. Methods A stethoscope was modified for airtight external ear canal fit; the dome was exchanged for a magnetic reluctance pressure sensor, allowing measurement of TM pulsations. Analog TM pulsations were analyzed by measuring the pulsation's slope ratio between the waveform's downslope and upslope. Seventeen normal subjects (ages 18-32 years) underwent hyperventilation and tilt table testing to induce ICP changes. An algorithm processed this data and predicted the subject's ICP status. Results The slope ratio method showed consistent and stable changes with the expected alterations in ICP from the tilt test and hyperventilation maneuvers. The classification algorithm correctly identified subjects with elevated ICP in 60 of 60 independent recordings on 17 subjects. Conclusion This paper has four conclusions. First, the "brain stethoscope" can detect increased ICP from the TM pulsation waveform in healthy subjects. Second, analysis of the TM waveform using slope ratio calculations is capable of distinguishing normal versus elevated ICP. Third, the tilt and hyperventilation maneuvers showed the expected physiologic trends. Last, further studies are needed on patients with pathological ICP before the brain stethoscope can be implemented into clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...