Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 45(4): 806-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25265638

RESUMO

Many machine learning applications involve analysis of high-dimensional data, where the number of input features is larger than/comparable to the number of data samples. Standard classification methods may not be sufficient for such data, and this provides motivation for nonstandard learning settings. One such new learning methodology is called learning through contradiction or Universum-support vector machine (U-SVM). Recent studies have shown U-SVM to be quite effective for sparse high-dimensional data sets. However, all these earlier studies have used balanced data sets with equal misclassification costs. This paper extends the U-SVM formulation to problems with different misclassification costs, and presents practical conditions for the effectiveness of this cost-sensitive U-SVM. Several empirical comparisons are presented to validate the proposed approach.

2.
IEEE Trans Neural Netw ; 22(8): 1241-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21724504

RESUMO

Many applications of machine learning involve analysis of sparse high-dimensional data, in which the number of input features is larger than the number of data samples. Standard inductive learning methods may not be sufficient for such data, and this provides motivation for nonstandard learning settings. This paper investigates a new learning methodology called learning through contradictions or Universum support vector machine (U-SVM). U-SVM incorporates a priori knowledge about application data, in the form of additional Universum samples, into the learning process. This paper investigates possible advantages of U-SVM versus standard SVM, and describes the practical conditions necessary for the effectiveness of the U-SVM. These conditions are based on the analysis of the univariate histograms of projections of training samples onto the normal direction vector of (standard) SVM decision boundary. Several empirical comparisons are presented to illustrate the practical utility of the proposed approach.


Assuntos
Inteligência Artificial , Máquina de Vetores de Suporte , Algoritmos , Reconhecimento Automatizado de Padrão/métodos , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...