Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 52(2): 410-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21888913

RESUMO

AMPK is an important sensor of cellular energy levels. The aim of these studies was to investigate whether cardiac K(ATP) channels, which couple cellular energy metabolism to membrane excitability, are regulated by AMPK activity. We investigated effects of AMPK on rat ventricular K(ATP) channels using electrophysiological and biochemical approaches. Whole-cell K(ATP) channel current was activated by metabolic inhibition; this occurred more rapidly in the presence of AICAR (an AMPK activator). AICAR had no effects on K(ATP) channel activity recorded in the inside-out patch clamp configuration, but ZMP (the intracellular intermediate of AICAR) strongly activated K(ATP) channels. An AMPK-mediated effect is demonstrated by the finding that ZMP had no effect on K(ATP) channels in the presence of Compound C (an AMPK inhibitor). Recombinant AMPK activated Kir6.2/SUR2A channels in a manner that was dependent on the AMP concentration, whereas heat-inactivated AMPK was without effect. Using mass-spectrometry and co-immunoprecipitation approaches, we demonstrate that the AMPK α-subunit physically associates with K(ATP) channel subunits. Our data demonstrate that the cardiac K(ATP) channel function is directly regulated by AMPK activation. During metabolic stress, a small change in cellular AMP that activates AMPK can be a potential trigger for K(ATP) channel opening. This article is part of a Special Issue entitled "Local Signaling in Myocytes".


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Canais KATP/metabolismo , Monofosfato de Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Células COS , Chlorocebus aethiops , Canais KATP/agonistas , Canais KATP/genética , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia , Transdução de Sinais , Estresse Fisiológico
2.
Am J Physiol Heart Circ Physiol ; 291(2): H543-51, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16501027

RESUMO

Cardiac ATP-sensitive K+ (K(ATP)) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression with the alpha-myosin heavy chain promoter. Weight gain and development after birth of these mice were similar to nontransgenic mice, but an increased mortality was noted after the age of 4-5 mo. Transgenic mice lacked cardiac K(ATP) channel activity as assessed with patch clamp techniques. Consistent with a decreased current density observed at positive voltages, the action potential duration was increased in these mice. Some myocytes developed EADs after isoproterenol treatment. Hemodynamic measurements revealed no significant effects on ventricular function (apart from a slightly elevated heart rate), whereas in vivo electrophysiological recordings revealed a prolonged ventricular effective refractory period in transgenic mice. The transgenic mice tolerated stress less well as evident from treadmill stress tests. The proarrhythmogenic features and lack of adaptation to a stress response in transgenic mice suggest that these features are intrinsic to the myocardium and that K(ATP) channels in the myocardium have an important role in protecting the heart from lethal arrhythmias and adaptation to stress situations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Western Blotting , Eletrocardiografia , Eletrofisiologia , Ventrículos do Coração/citologia , Hemodinâmica/fisiologia , Canais KATP , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Pericárdio/fisiologia , Esforço Físico/fisiologia , Regiões Promotoras Genéticas/genética , RNA/biossíntese , RNA/genética , Período Refratário Eletrofisiológico/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcolema/metabolismo , Frações Subcelulares/metabolismo , Função Ventricular
3.
J Biol Chem ; 280(46): 38464-70, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16170200

RESUMO

The regulation of ATP-sensitive potassium (K(ATP)) channel activity is complex and a multitude of factors determine their open probability. Physiologically and pathophysiologically, the most important of these are intracellular nucleotides, with a long-recognized role for glycolytically derived ATP in regulating channel activity. To identify novel regulatory subunits of the K(ATP) channel complex, we performed a two-hybrid protein-protein interaction screen, using as bait the mouse Kir6.2 C terminus. Screening a rat heart cDNA library, we identified two potential interacting proteins to be the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triose-phosphate isomerase. The veracity of interaction was verified by co-immunoprecipitation techniques in transfected mammalian cells. We additionally demonstrated that pyruvate kinase also interacts with Kir6.2 subunits. The physiological relevance of these interactions is illustrated by the demonstration that native Kir6.2 protein similarly interact with GAPDH and pyruvate kinase in rat heart membrane fractions and that Kir6.2 protein co-localize with these glycolytic enzymes in rat ventricular myocytes. The functional relevance of our findings is demonstrated by the ability of GAPDH or pyruvate kinase substrates to directly block the K(ATP) channel under patch clamp recording conditions. Taken together, our data provide direct evidence for the concept that key enzymes involved in glycolytic ATP production are part of a multisubunit K(ATP) channel protein complex. Our data are consistent with the concept that the activity of these enzymes (possibly by ATP formation in the immediate intracellular microenvironment of this macromolecular K(ATP) channel complex) causes channel closure.


Assuntos
Regulação da Expressão Gênica , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/química , Piruvato Quinase/química , Triose-Fosfato Isomerase/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Bactérias/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA/metabolismo , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Glicólise , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/metabolismo , Hipóxia , Imunoglobulina G/química , Imunoprecipitação , Cinética , Camundongos , Microscopia de Fluorescência , Células Musculares/metabolismo , Mutação , Miocárdio/metabolismo , Técnicas de Patch-Clamp , Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Piruvato Quinase/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção , Técnicas do Sistema de Duplo-Híbrido
4.
BMC Physiol ; 5(1): 1, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15647111

RESUMO

BACKGROUND: Electrophysiological data suggest that cardiac KATP channels consist of Kir6.2 and SUR2A subunits, but the distribution of these (and other KATP channel subunits) is poorly defined. We examined the localization of each of the KATP channel subunits in the mouse and rat heart. RESULTS: Immunohistochemistry of cardiac cryosections demonstrate Kir6.1 protein to be expressed in ventricular myocytes, as well as in the smooth muscle and endothelial cells of coronary resistance vessels. Endothelial capillaries also stained positive for Kir6.1 protein. Kir6.2 protein expression was found predominantly in ventricular myocytes and also in endothelial cells, but not in smooth muscle cells. SUR1 subunits are strongly expressed at the sarcolemmal surface of ventricular myocytes (but not in the coronary vasculature), whereas SUR2 protein was found to be localized predominantly in cardiac myocytes and coronary vessels (mostly in smaller vessels). Immunocytochemistry of isolated ventricular myocytes shows co-localization of Kir6.2 and SUR2 proteins in a striated sarcomeric pattern, suggesting t-tubular expression of these proteins. Both Kir6.1 and SUR1 subunits were found to express strongly at the sarcolemma. The role(s) of these subunits in cardiomyocytes remain to be defined and may require a reassessment of the molecular nature of ventricular KATP channels. CONCLUSIONS: Collectively, our data demonstrate unique cellular and subcellular KATP channel subunit expression patterns in the heart. These results suggest distinct roles for KATP channel subunits in diverse cardiac structures.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Vasos Coronários/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Endotélio Vascular/metabolismo , Ventrículos do Coração , Imuno-Histoquímica , Técnicas In Vitro , Canais KATP , Camundongos , Mitocôndrias Cardíacas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos , Receptores de Droga , Frações Subcelulares/metabolismo , Receptores de Sulfonilureias , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...