Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1204828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915505

RESUMO

Cumin (Cuminum cyminum L.), an important spice crop belonging to the Apiaceae family is infected by Fusarium oxysporum f. sp. cumini (Foc) to cause wilt disease, one of the most devastating diseases of cumin adversely affects its production. As immune responses of cumin plants against the infection of Foc are not well studied, this research aimed to identify the genes and pathways involved in responses of cumin (cv. GC-2, GC-3, GC-4, and GC-5) to the wilt pathogen. Differential gene expression analysis revealed a total of 2048, 1576, 1987, and 1174 differentially expressed genes (DEGs) in GC-2, GC-3, GC-4, and GC-5, respectively. In the resistant cultivar GC-4 (resistant against Foc), several important transcripts were identified. These included receptors, transcription factors, reactive oxygen species (ROS) generating and scavenging enzymes, non-enzymatic compounds, calcium ion (Ca2+) transporters and receptors, R-proteins, and PR-proteins. The expression of these genes is believed to play crucial roles in conferring resistance against Foc. Gene ontology (GO) analysis of the up-regulated DEGs showed significant enrichment of 19, 91, 227, and 55 biological processes in GC-2, GC-3, GC-4, and GC-5, respectively. Notably, the resistant cultivar GC-4 exhibited enrichment in key GO terms such as 'secondary metabolic process', 'response to reactive oxygen species', 'phenylpropanoid metabolic process', and 'hormone-mediated signaling pathway'. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the enrichment of 28, 57, 65, and 30 pathways in GC-2, GC-3, GC-4, and GC-5, respectively, focusing on the up-regulated DEGs. The cultivar GC-4 showed enrichment in pathways related to steroid biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, butanoate metabolism, limonene and pinene degradation, and carotenoid biosynthesis. The activation or up-regulation of various genes and pathways associated with stress resistance demonstrated that the resistant cultivar GC-4 displayed enhanced defense mechanisms against Foc. These findings provide valuable insights into the defense responses of cumin that could contribute to the development of cumin cultivars with improved resistance against Foc.

2.
3 Biotech ; 11(9): 395, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34422536

RESUMO

Amaranth (Amaranthus spp.) belonging to Amaranthaceae, is known as "the crop of the future" because of its incredible nutritional quality. Amaranthus spp. (> 70) have a huge diversity in terms of their plant morphology, production and nutritional quality; however, these species are not well characterized at molecular level due to unavailability of robust and reproducible molecular markers, which is essential for crop improvement programs. In the present study, 13,051 genome-wide microsatellite motifs were identified and subsequently utilized for marker development using A. hypochondriacus (L.) genome (JPXE01.1). Out of those, 1538 motifs were found with flanking sequences suitable for primer designing. Among designed primers, 225 were utilized for validation of which 119 (52.89%) primers were amplified. Cross-species transferability and evolutionary relatedness among ten species of Amaranthus (A. hypochondriacus, A. caudatus, A. retroflexus, A. cruentus, A. tricolor, A. lividus, A. hybridus, A. viridis, A. edulis, and A. dubius) were also studied using 45 microsatellite motifs. The maximum (86.67%) and minimum (28.89%) cross-species transferability were observed in A. caudatus and A. dubius, respectively, that indicated high variability present across the Amaranthus spp. Total 97 alleles were detected among 10 species of Amaranthus. The averages of major allele frequency, gene diversity, heterozygosity and PIC were 0.733, 0.347, 0.06, and 0.291, respectively. Nei's genetic dissimilarity coefficients ranged from 0.0625 (between A. tricolor and A. hybridus) to 0.7918 (between A. viridis and A. lividus). The phylogenetic tree grouped ten species into three major clusters. Genome-wide development of microsatellite markers and their transferability revealed relationships among amaranth species which ultimately can be useful for species identification, DNA fingerprinting, and QTLs/gene(s) identification. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02930-5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...