Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Res Arch ; 12(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39026932

RESUMO

Stevens Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) are mainly drug-induced severe cutaneous adverse reactions with increased mortality. It also involves the eyes causing ocular surface disease leading to visual impairment and blindness. The role of NLRP3 Inflammasome in causing ocular surface disease and keratinocyte apoptosis is not fully explored. This study is focused on determining the role of NLRP3 Inflammasome in the pathogenesis of Stevens Johnson Syndrome/Toxic Epidermal Necrolysis. The NLRP3 Inflammasome plays a crucial role in the pathogenesis of Stevens Johnson Syndrome/Toxic Epidermal Necrolysis and may correlate with the degree of severity of skin detachment and ocular surface disease. This study looked at the expression of the NLRP3 Inflammasome in the skin of patients with biopsy confirm Stevens Johnson Syndrome/Toxic Epidermal Necrolysis compared to the lichen planus and normal controls by immunohistochemistry as well as observing the mitochondrial function of platelets challenged with plasma from patients with Stevens Johnson Syndrome/Toxic Epidermal Necrolysis and Normal Human Plasma using Agilent Seahorse XF Analyzer. Under a current, Loyola IRB approved protocol, 12 collected and archived unstained slides of skin and blood plasma samples from patients with biopsy confirmed Stevens Johnson Syndrome/Toxic Epidermal Necrolysis was used for this study. Immunohistochemical analysis was performed using anti-NLRP3 antibodies followed by imaging on a Delta Vision microscope. The precise roles of cytokines and chemokine receptors in severity of skin detachment has not been completely studied. The identification of the roles of NLRP3 in Stevens Johnson Syndrome/Toxic Epidermal Necrolysis would bridge the gaps in the basic understanding regarding the pathogenesis of this disease spectrum. NLRP3 Inflammasome is a potential therapeutic target and its inhibition by phytochemicals may be appropriate effective treatment strategies in the management of this condition.

2.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979149

RESUMO

The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting. Here, we used a CPSF6 truncation mutant lacking a functional nuclear localization signal (NLS), CPSF6-358, and appended heterologous NLSs to rescue nuclear localization. We show that some, but not all, NLSs drive CPSF6-358 into the nucleus. Interestingly, we found that some nuclear localized CPSF6-NLS chimeras supported inefficient HIV-1 infection. We found that HIV-1 still enters the nucleus in these cell lines but fails to traffic to speckle-associated domains (SPADs). Additionally, we show that HIV-1 fails to efficiently integrate in these cell lines. Collectively, our results demonstrate that the NLS of CPSF6 facilitates steps of HIV-1 infection subsequent to nuclear import and additionally identify the ability of canonical NLS sequences to influence cargo localization in the nucleus following nuclear import.

3.
Methods Mol Biol ; 2807: 141-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743226

RESUMO

To integrate with host chromatin and establish a productive infection, HIV-1 must translocate the viral Ribonucleoprotein (RNP) complex through the nuclear pore complex (NPC). Current assay to measure HIV-1 nuclear import relies on a transient byproduct of HIV-1 integration failure called 2-LTR circles. However, 2-LTR circles require complete or near-complete reverse transcription and association with the non-homologous end joining (NHEJ) machinery in the nucleus, which can complicate interpretation of 2-LTR circle formation as a measure of nuclear import kinetics. Here, we describe an approach to measure nuclear import of infectious HIV-1 particles. This involves chemically induced dimerization of Nup62, a central FG containing nucleoporin. Using this technique, nuclear import of infectious particles can be monitored in both primary and cell culture models. In response to host factor depletion or restriction factors, changes in HIV-1 nuclear import can be effectively measured using the nuclear import kinetics (NIK) assay.


Assuntos
Transporte Ativo do Núcleo Celular , HIV-1 , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Cinética , Núcleo Celular/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Integração Viral
4.
Curr Opin Virol ; 53: 101203, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121335

RESUMO

A hallmark feature of lentiviruses, which separates them from other members of the retrovirus family, is their ability to infect non-dividing cells by traversing the nuclear pore complex. The viral determinant that mediates HIV-1 nuclear import is the viral capsid (CA) protein, which forms the conical core protecting the HIV-1 genome in a mature virion. Recently, a series of novel approaches developed to monitor post-fusion events in infection have challenged previous textbook models of the viral life cycle, which envisage reverse transcription and disassembly of the capsid core as events that complete in the cytoplasm. In this review, we summarize these recent findings and describe their implications on our understanding of the spatiotemporal staging of HIV-1 infection with a focus on the nuclear import and its implications in other aspects of the viral lifecycle.


Assuntos
Infecções por HIV , HIV-1 , Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Núcleo Celular , HIV-1/genética , Humanos , Poro Nuclear/metabolismo , Transcrição Reversa
5.
Nat Microbiol ; 5(9): 1088-1095, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32483230

RESUMO

Retroviral infection involves the reverse transcription of the viral RNA genome into DNA, which is subsequently integrated into the host cell genome. Human immunodeficiency virus type 1 (HIV-1) and other lentiviruses mediate the infection of non-dividing cells through the ability of the capsid protein1 to engage the cellular nuclear import pathways of the target cell and mediate their nuclear translocation through components of the nuclear pore complex2-4. Although recent studies have observed the presence of the capsid protein in the nucleus during infection5-8, reverse transcription and disassembly of the viral core have conventionally been considered to be cytoplasmic events. Here, we use an inducible nuclear pore complex blockade to monitor the kinetics of HIV-1 nuclear import and define the biochemical staging of these steps of infection. Surprisingly, we observe that nuclear import occurs with relatively rapid kinetics (<5 h) and precedes the completion of reverse transcription in target cells, demonstrating that reverse transcription is completed in the nucleus. We also observe that HIV-1 remains susceptible to the capsid-destabilizing compound PF74 following nuclear import, revealing that uncoating is completed in the nucleus. Additionally, we observe that certain capsid mutants are insensitive to a Nup62-mediated nuclear pore complex blockade in cells that potently block infection by wild-type capsid, demonstrating that HIV-1 can use distinct nuclear import pathways during infection. These studies collectively define the spatio-temporal staging of critical steps of HIV-1 infection and provide an experimental system to separate and thereby define the cytoplasmic and nuclear stages of infection by other viruses.


Assuntos
Núcleo Celular/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Poro Nuclear/metabolismo , Poro Nuclear/virologia , Transcrição Reversa , Transporte Ativo do Núcleo Celular , Linfócitos T CD4-Positivos/virologia , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Citoplasma/metabolismo , Células HEK293 , HIV-1/fisiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Indóis , Macrófagos/virologia , Fenilalanina/análogos & derivados , Replicação Viral
6.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899089

RESUMO

Recent studies show that human immunodeficiency virus type 1 (HIV-1) can utilize microtubules and their associated proteins to complete key postfusion steps during infection. These include associating with both dynein and kinesin motors, as well as proteins, which enhance infection by altering microtubule dynamics during infection. In this article, we will discuss findings on how dynein and kinesin motors, as well as other microtubule-associated proteins, influence HIV-1 trafficking, viral core uncoating, and nuclear import of the viral ribonucleoprotein (RNP).


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte Ativo do Núcleo Celular , Humanos , Proteínas Virais , Desenvelopamento do Vírus
7.
Proc Natl Acad Sci U S A ; 114(50): E10707-E10716, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180435

RESUMO

Numerous viruses, including HIV-1, exploit the microtubule network to traffic toward the nucleus during infection. Although numerous studies have observed a role for the minus-end microtubule motor dynein in HIV-1 infection, the mechanism by which the viral core containing the viral genome associates with dynein and induces its perinuclear trafficking has remained unclear. Here, we report that the dynein adapter protein bicaudal D2 (BICD2) is able to interact with HIV-1 viral cores in target cells. We also observe that BICD2 can bind in vitro-assembled capsid tubes through its CC3 domain. We observe that BICD2 facilitates infection by promoting the trafficking of viral cores to the nucleus, thereby promoting nuclear entry of the viral genome and infection. Finally, we observe that depletion of BICD2 in the monocytic cell line THP-1 results in an induction of IFN-stimulated genes in these cells. Collectively, these results identify a microtubule adapter protein critical for trafficking of HIV-1 in the cytoplasm of target cells and evasion of innate sensing mechanisms in macrophages.


Assuntos
Genoma Viral , Infecções por HIV/metabolismo , HIV-1/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Núcleo Celular/virologia , Citoplasma/virologia , Técnicas de Inativação de Genes , Células HEK293 , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/metabolismo , Células HeLa , Humanos , Macrófagos/imunologia , Proteínas Associadas aos Microtúbulos/genética , Internalização do Vírus , Replicação Viral , Desenvelopamento do Vírus
8.
PLoS Pathog ; 12(6): e1005700, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27327622

RESUMO

Following envelope mediated fusion, the HIV-1 core is released into the cytoplasm of the target cell and undergoes a series of trafficking and replicative steps that result in the nuclear import of the viral genome, which ultimately leads to the integration of the proviral DNA into the host cell genome. Previous studies have found that disruption of microtubules, or depletion of dynein or kinesin motors, perturb the normal uncoating and trafficking of the viral genome. Here, we show that the Kinesin-1 motor, KIF5B, induces a relocalization of the nuclear pore component Nup358 into the cytoplasm during HIV-1 infection. This relocalization of NUP358 is dependent on HIV-1 capsid, and NUP358 directly associates with viral cores following cytoplasmic translocation. This interaction between NUP358 and the HIV-1 core is dependent on multiple capsid binding surfaces, as this association is not observed following infection with capsid mutants in which a conserved hydrophobic binding pocket (N74D) or the cyclophilin A binding loop (P90A) is disrupted. KIF5B knockdown also prevents the nuclear entry and infection by HIV-1, but does not exert a similar effect on the N74D or P90A capsid mutants which do not rely on Nup358 for nuclear import. Finally, we observe that the relocalization of Nup358 in response to CA is dependent on cleavage protein and polyadenylation factor 6 (CPSF6), but independent of cyclophilin A. Collectively, these observations identify a previously unappreciated role for KIF5B in mediating the Nup358 dependent nuclear import of the viral genome during infection.


Assuntos
Núcleo Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/patogenicidade , Cinesinas/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Western Blotting , Núcleo Celular/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real
9.
J Virol ; 90(7): 3400-10, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764007

RESUMO

UNLABELLED: TRIM5α is an interferon-inducible retroviral restriction factor that prevents infection by inducing the abortive disassembly of capsid cores recognized by its C-terminal PRY/SPRY domain. The mechanism by which TRIM5α mediates the disassembly of viral cores is poorly understood. Previous studies demonstrated that proteasome inhibitors abrogate the ability of TRIM5α to induce premature core disassembly and prevent reverse transcription; however, viral infection is still inhibited, indicating that the proteasome is partially involved in the restriction process. Alternatively, we and others have observed that TRIM5α associates with proteins involved in autophagic degradation pathways, and one recent study found that autophagic degradation is required for the restriction of retroviruses by TRIM5α. Here, we show that TRIM5α is basally degraded via autophagy in the absence of restriction-sensitive virus. We observe that the autophagy markers LC3b and lysosome-associated membrane protein 2A (LAMP2A) localize to a subset of TRIM5α cytoplasmic bodies, and inhibition of lysosomal degradation with bafilomycin A1 increases this association. To test the requirement for macroautophagy in restriction, we examined the ability of TRIM5α to restrict retroviral infection in cells depleted of the autophagic mediators ATG5, Beclin1, and p62. In all cases, restriction of retroviruses by human TRIM5α, rhesus macaque TRIM5α, and owl monkey TRIM-Cyp remained potent in cells depleted of these autophagic effectors by small interfering RNA (siRNA) knockdown or clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing. Collectively, these results are consistent with observations that the turnover of TRIM5α proteins is sensitive to autophagy inhibition; however, the data presented here do not support observations that the inhibition of autophagy abrogates retroviral restriction by TRIM5 proteins. IMPORTANCE: Restriction factors are a class of proteins that inhibit viral replication. Following fusion of a retrovirus with a host cell membrane, the retroviral capsid is released into the cytoplasm of the target cell. TRIM5α inhibits retroviral infection by promoting the abortive disassembly of incoming retroviral capsid cores; as a result, the retroviral genome is unable to traffic to the nucleus, and the viral life cycle is extinguished. In the process of restriction, TRIM5α itself is degraded by the proteasome. However, in the present study, we have shown that in the absence of a restriction-sensitive virus, TRIM5α is degraded by both proteasomal and autophagic degradation pathways. Notably, we observed that restriction of retroviruses by TRIM5α does not require autophagic machinery. These data indicate that the effector functions of TRIM5α can be separated from its degradation and may have further implications for understanding the mechanisms of other TRIM family members.


Assuntos
Autofagia/genética , Proteínas de Transporte/metabolismo , Infecções por Retroviridae/virologia , Retroviridae/crescimento & desenvolvimento , Proteínas do Core Viral/metabolismo , Replicação Viral/genética , Animais , Fatores de Restrição Antivirais , Aotidae , Proteínas Reguladoras de Apoptose/genética , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Macaca mulatta , Macrolídeos/farmacologia , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Retroviridae/genética , Infecções por Retroviridae/imunologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
10.
J Virol ; 88(23): 13613-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231297

RESUMO

UNLABELLED: Following entry into the target cell, human immunodeficiency virus type 1 (HIV-1) must reverse transcribe its RNA genome to DNA and traffic to the nuclear envelope, where the viral genome is translocated into the nucleus for subsequent integration into the host cell chromosome. During this time, the viral core, which houses the genome, undergoes a poorly understood process of disassembly, known as uncoating. Collectively, many studies suggest that uncoating is tightly regulated to allow nuclear import of the genome while minimizing the exposure of the newly synthesized DNA to cytosolic DNA sensors. However, whether host cellular proteins facilitate this process remains poorly understood. Here we report that intact microtubules facilitate HIV-1 uncoating in target cells. Disruption of microtubules with nocodazole substantially delays HIV-1 uncoating, as revealed with three different assay systems. This defect in uncoating did not correlate with defective reverse transcription at early times postinfection, demonstrating that microtubule-facilitated uncoating is distinct from the previously reported role of viral reverse transcription in the uncoating process. We also find that pharmacological or small interfering RNA (siRNA)-mediated inhibition of cytoplasmic dynein or the kinesin 1 heavy chain KIF5B delays uncoating, providing detailed insight into how microtubules facilitate the uncoating process. These studies reveal a previously unappreciated role for microtubules and microtubule motor function in HIV-1 uncoating, establishing a functional link between viral trafficking and uncoating. Targeted disruption of the capsid motor interaction may reveal novel mechanisms of inhibition of viral infection or provide opportunities to activate cytoplasmic antiviral responses directed against capsid or viral DNA. IMPORTANCE: During HIV-1 infection, fusion of viral and target cell membranes dispenses the viral ribonucleoprotein complex into the cytoplasm of target cells. During this time, the virus must reverse transcribe its RNA genome, traffic from the location of fusion to the nuclear membrane, and undergo the process of uncoating, whereby the viral capsid core disassembles to allow the subsequent nuclear import of the viral genome. Numerous cellular restriction factors target the viral capsid, suggesting that perturbation of the uncoating process represents an excellent antiviral target. However, this uncoating process, and the cellular factors that facilitate uncoating, remains poorly understood. The main observation of this study is that normal uncoating requires intact microtubules and is facilitated by dynein and kinesin motors. Targeting these factors may either directly inhibit infection or delay it enough to trigger mediators of intrinsic immunity that recognize cytoplasmic capsid or DNA and subsequently induce an antiviral state in these cells.


Assuntos
Dineínas/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Cinesinas/metabolismo , Desenvelopamento do Vírus , Animais , Linhagem Celular , Humanos
11.
Retrovirology ; 11: 68, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123063

RESUMO

BACKGROUND: The IFN-α-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Genetic evidence suggested that capsid is the viral determinant for restriction by MxB. This work explores the ability of MxB to bind to the HIV-1 core, and the role of capsid-binding in restriction. RESULTS: We showed that MxB binds to the HIV-1 core and that this interaction leads to inhibition of the uncoating process of HIV-1. These results identify MxB as an endogenously expressed protein with the ability to inhibit HIV-1 uncoating. In addition, we found that a benzimidazole-based compound known to have a binding pocket on the surface of the HIV-1 capsid prevents the binding of MxB to capsid. The use of this small-molecule identified the MxB binding region on the surface of the HIV-1 core. Domain mapping experiments revealed the following requirements for restriction: 1) MxB binding to the HIV-1 capsid, which requires the 20 N-terminal amino acids, and 2) oligomerization of MxB, which is mediated by the C-terminal domain provides the avidity for the interaction of MxB with the HIV-1 core. CONCLUSIONS: Overall our work establishes that MxB binds to the HIV-1 core and inhibits the uncoating process of HIV-1. Moreover, we demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas do Core Viral/metabolismo , Capsídeo/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Ligação Proteica , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...