Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973414

RESUMO

A simple chemo-dosimeter VDP2 bearing a ferrocene moiety was designed, synthesized, and characterized, and exhibited both chromogenic and electrochemical responses selectively for CN- in H2O-DMSO (9 : 1, v/v) medium. The probe VDP2 showed an instantaneous color change from colorless to yellow with CN- that can readily be observed visually. The deprotonation of the benzimidazole -NH, followed by nucleophilic addition of CN- to the olefinic C-atom, as evidenced by 1H and 13C NMR titration experiments, caused the colorimetric and electrochemical responses. The mass spectral study, CV, FTIR and Mulliken charges computed well supported the proposed mechanism. The electrochemical limit of detection was calculated to be 72 nM. The results of DFT and TD-DFT calculations suggested that the colorless nature of the probe VDP2 is due to weak intramolecular charge transfer (ICT) transition and the yellow color of the VDP2+CN adduct is due to through-space ICT transition. Above all, the probe could be an ideal candidate for monitoring cyanide in water samples and cassava flour with practical significance. A simple and convenient colorimetric method was developed to determine cyanide content in cassava flour.

2.
J Fluoresc ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008863

RESUMO

A new chemo-dosimeter AK4 containing quinoline fluorophore has rationally been designed, synthesised and characterized using 1H and 13C NMR and mass spectral techniques. The probe senses explicitly CN- ion through a dramatic enhancement in fluorescence over other commonly coexistent anions in H2O:DMSO (9:1 v/v) medium over a broad pH range (4-10). 1H NMR titration revealed the deprotonation followed by nucleophilic addition reaction of CN-, which was supported by 13C NMR and mass spectral examinations. The Job's continuous variation method indicated the formation of a 1:1 adduct between AK4 and CN- with a binding constant of 1.62 × 104 M-1. A limit of detection (LOD) towards CN- of 0.69 µM has been determined, which is much lower than the World Health Organization (WHO) recommended limit of CN- in drinking water (1.9 µM). The changes in the optical properties of AK4 upon reaction with CN- were delineated using Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) calculations. Moreover, fluorescence microscopic studies established that AK4 could be an effective probe for imaging intracellular CN- in HeLa cells.

3.
J Fluoresc ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889454

RESUMO

Different spectroscopic techniques and Density Functional Theory (DFT)/Time-Dependent Density Functional Theory (TDDFT) calculations have been employed to investigate the dual channel CN- detection behaviour of the developed chemo-dosimeter (AK3). The CN- with AK3 reaction triggered a colour change from pale yellow to colourless and enhanced fluorescence. UV-Vis, fluorescence, 1H & 13C NMR and mass techniques coupled with theoretical calculations (Mulliken charges, dihedral angles) revealed that the CN- sensing process mechanism involves deprotonation of the N-H group followed by nucleophilic addition reaction. Detailed TD-DFT calculations showed that the relaxation of excited electrons from LUMO and to two different ground states is responsible for the weak/moderate fluorescence of AK3. Nucleophilic addition of CN- to the C-atom of the CH = CH bridge terminated the π-conjugation between donor and acceptor regions, reduced the coplanarity, decreased the ICT transition and consequently enhanced the fluorescence of the probe. The practical utility of the probe was demonstrated by detecting cyanide in food materials and determining CN- in environmental water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...