Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(6): 10094-10107, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460102

RESUMO

Scanometric detection of tomato leaf curl New Delhi viral DNA using AuNP-conjugated mono- and bifunctional oligo probes through direct DNA hybridization assay (DDH assay) and sandwich DNA hybridization assay (SDH assay) with silver enhancement was developed. Tomato leaf curl New Delhi virus (ToLCNDV) coat protein gene-specific thiol-modified ssoligo probes were used for the preparation of mono- and bifunctional AuNP-ssoligo probe conjugates (signal probes). ssDNA arrays were prepared using polymerase chain reaction (PCR), rolling circle amplification (RCA), genomic DNAs fragments, and phosphate-modified positive control/capture probes through 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/1-methylimidazole conjugation on the amine-modified glass slide (GS) surface. In the DDH assay, signal probes were directly hybridized with ssDNA array of positive control and ToLCNDV DNA samples and the detection signals were amplified by silver enhancement. Dark black/gray colors were developed on the GS by the result of Ag enhancement, which can be visualized and discriminated by the naked eye. The images were captured using a simple flatbed scanner, and the determined amounts of signal probes were hybridized with their target DNA. Similarly, the SDH assay also performed through two rounds of hybridization between capture probes and target DNA; target DNA and signal probes followed by silver enhancement. The detection signals were found higher in the PCR sample than the RCA and genomic DNA samples because of the presence of increased copy numbers of complementary DNAs in PCR samples. Further, bifunctional AuNP-ssoligo probe shows higher intensity of detection signal than monofunctional probes because it can be hybridized with both strands of dsDNA targets. Moreover, the DDH-based scanometric method showed higher detection sensitivity than the SDH assay-based scanometric method. Overall, bifunctional signal probes showed more detection sensitivity than monofunctional probes in scanometric methods based on both DDH and SDH assays. The limit of detection of this developed scanometric method was optimized (100 zM to 100 pM concentration). Further, DDH assay-based scanometric method shows significant advantages over the SDH assay method, such as cost-effectiveness, because it requires only single probes (signal probes), less time-consuming by the need of only single-step hybridization, and higher detection sensitivity (up to zM). To the best of our knowledge, this is the first attempt made to develop a scanometric-based nanoassay method for the detection of plant viral DNA. This approach will be a remarkable milestone for the application of nanotechnology in the development of nanobiosensor for plant pathogen detection.

2.
J Fluoresc ; 24(5): 1397-406, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24946861

RESUMO

We demonstrated label free ethidium bromide assisted characterization of DNA interaction with cholate capped AuNPs. Interactions between ss/ds DNA and AuNPs with two different lengths (0.5 and 0.85 kb) were analyzed through fluorescence spectrophotometer and agrose gel electrophoresis analysis. Further results were confirmed by UV-globally visible spectrophotometer, DLS and TEM. As 0.5 and 0.85 kb of ssDNA effectively interacted with AuNPs through the van der Waals interaction which consequently led to the prevention of salt induced aggregation, EtBr intercalations as well as fluorescence shift with less binding constant 0.098 and 0.108 µM, respectively. On the contrary, the same length of dsDNA (0.5 and 0.85 kb) not interacted with AuNPs which led to the NPs aggregation, EtBr intercalation as well as fluorescence shift with increased binding constant 0.166 and 0.599 µM, respectively. This approach helped to understand the mode of interactions of DNA with cholate capped AuNPs without any modifications in a simple method and the results could be readout through the naked eye under the UV transilluminator.


Assuntos
Colatos/química , DNA/química , Etídio/química , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , DNA/genética , Corantes Fluorescentes/síntese química , Fluorometria , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...