Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 8(16): 8976-8982, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35539868

RESUMO

Optical and photocatalytic properties were determined for the solid solution series (GaN)1-x (ZnO) x synthesized at high pressure over the entire compositional range (x = 0.07 to 0.9). We report for the first time photocatalytic H2 evolution activity from water for (GaN)1-x (ZnO) x without cocatalysts, pH modifiers and sacrificial reagents. Syntheses were carried out by reacting GaN and ZnO in appropriate amounts at temperatures ranging from 1150 to 1200 °C, and at a pressure of 1 GPa. ZnGa2O4 was observed as a second phase, with the amount decreasing from 12.8 wt% at x = 0.07 to ∼0.5 wt% at x = 0.9. The smallest band gap of 2.65 eV and the largest average photocatalytic H2 evolution rate of 2.31 µmol h-1 were observed at x = 0.51. Samples with x = 0.07, 0.24 and 0.76 have band gaps of 2.89 eV, 2.78 eV and 2.83 eV, and average hydrogen evolution rates of 1.8 µmol h-1, 0.55 µmol h-1 and 0.48 µmol h-1, respectively. The sample with x = 0.9 has a band gap of 2.82 eV, but did not evolve hydrogen. An extended photocatalytic test showed considerable reduction of activity over 20 hours.

2.
Inorg Chem ; 55(7): 3384-92, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27002597

RESUMO

The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides-semiconductors for photocatalytic overall water splitting-is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. We utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases were discovered in the GaN-Nb2O5 system. The (Nb2O5)0.84:(NbO2)0.32:(GaN)0.82 rutile structured phase was formed at 1 GPa and 900 °C and gradually transformed to a α-PbO2-related structure above 2.8 GPa and 1000 °C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...