Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(20): 15018-15031, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742899

RESUMO

Enhanced thermal, chemical, and mechanical properties of different metal nanoparticle morphologies integrated with metal oxides have been reported in multiple instances. The chemical and material robustness of metal nanoparticles incorporated surficially and into the bulk of distinct as well as spontaneously formed morphologies of metal oxides through solution-based and microwave-based approaches are investigated in this study. These composites were tested for their chemical and material robustness by exposing films formed on quartz substrates to high temperatures (800 °C) in an air ambient as well as to extreme conditions of pH, often encountered in harsh environment applications such as sensing and catalysis. The changes in the optical properties and crystallinity have been studied using in situ absorption and ex situ X-ray diffraction analyses and electron microscopy. The trends observed with respect to the changes in the plasmonic absorbance were validated theoretically and found to be in reasonable agreement with the experimental data. Confirmations of the phenomena occurring in different morphologies and architectures were thereby corroborated through careful interpretations from experiments and predictions from theoretical models. We, therefore, report a simple solution-based process for achieving engineered harsh environment-compatible nanocomposites through studies specifically tailored for such applications such as catalysis, sensing, energy storage, and enhanced luminescence.

2.
Chem Asian J ; 19(13): e202400202, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38687089

RESUMO

Herein, the performance of asymmetric supercapacitors (ASC) fabricated using ZnCo2O4 (ZCO) nano-hexagons and orange peel-derived activated carbon (OPAC) as electrodes was studied. ZCO was prepared by a double hydroxide method and OPAC was prepared from orange peel followed by KOH activation. For ZCO, the calcination temperature was determined using TGA analysis. The XRD showed the presence of a cubic spinel structure. The chemical structure was analyzed using XPS, FTIR, and Raman spectroscopy respectively. For OPAC, the presence of an amorphous nature was inferred; FTIR and Raman studies indicate the presence of functional groups and defect structure in the material. The presence of ZCO nano-hexagons was observed from SEM and TEM respectively. For OPAC, an interconnected pore structure was observed from the SEM image. The specific capacitance for ZCO and OPAC was found to be 194 F.g-1 and 159 F.g-1 at a current density of 0.25 A.g-1. Further, an ASC was fabricated using ZCO as a positive and OPAC as a negative electrode in 2M KOH-soaked separator. A cell voltage of 1.2 V was achieved and the specific capacitance was calculated to be 64 F.g-1 at 0.25 A.g-1. Further, the cyclic stability and the changes at the electrode/electrolyte interface were studied.

3.
Beilstein J Nanotechnol ; 14: 380-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025366

RESUMO

The application of plasmonic nanoparticles is motivated by the phenomenon of surface plasmon resonance. Owing to the tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of absorbed light to heat by these particles, has led to thriving research regarding the utilization of plasmonic nanoparticles for a myriad of applications. The design of conventional nanomaterials for PT conversion has focussed predominantly on the manipulation of photon absorption through bandgap engineering, doping, incorporation, and modification of suitable matrix materials. Plasmonic nanomaterials offer an alternative and attractive approach in this regard, through the flexibility in the excitation of surface plasmons. Specific advantages are the considerable improved bandwidth of the absorption, a higher efficiency of photon absorption, facile tuning, as well as flexibility in the synthesis of plasmonic nanomaterials. This review of plasmonic PT (PPT) research begins with a theoretical discussion on the plasmonic properties of nanoparticles by means of the quasi-static approximation, Mie theory, Gans theory, generic simulations on common plasmonic material morphologies, and the evaluation processes of PT performance. Further, a variety of nanomaterials and material classes that have potential for PPT conversion are elucidated, such as plasmonic metals, bimetals, and metal-metal oxide nanocomposites. A detailed investigation of the essential, but often ignored, concept of thermal, chemical, and aggregation stability of nanoparticles is another part of this review. The challenges that remain, as well as prospective directions and chemistries, regarding nanomaterials for PT conversion are pondered on in the final section of the article, taking into account the specific requirements from different applications.

4.
J Electron Mater ; 51(5): 1950-1973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250154

RESUMO

Field-effect transistor biosensors (Bio-FET) have attracted great interest in recent years owing to their distinctive properties like high sensitivity, good selectivity, and easy integration into portable and wearable electronic devices. Bio-FET performance mainly relies on the constituent components such as the bio-recognition layer and the transducer, which ensures device stability, sensitivity, and lifetime. Nanomaterial-based Bio-FETs are excellent candidates for biosensing applications. This review discusses the basic concepts, function, and working principles of Bio-FETs, and focuses on the progress of recent research in Bio-FETs in the sensing of neurotransmitters, glucose, nucleic acids, proteins, viruses, and cancer biomarkers using nanomaterials. Finally, challenges in the development of Bio-FETs, as well as an outlook on the prospects of nano Bio-FET-based sensing in various fields, are discussed.

5.
Chem Asian J ; 16(22): 3558-3584, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34510778

RESUMO

Noble metal nanoparticles like Au have long been admired for their brilliant colour, significantly influenced by plasmon resonance. When embedded in metal oxides, they exhibit unique properties which make them an excellent choice for sensing in high-temperature and harsh environment atmospheres. In this review, the various morphologies of Au nanoparticles (AuNPs) used in combination with metal oxides for sensing gases at temperatures greater than 300 °C are discussed. Theoretical discussions on the plasmon resonance properties of AuNPs as well as computational techniques like finite difference time domain (FDTD), are often used for understanding and correlating their extinction spectra and are briefed initially. The sensing properties of AuNPs embedded on a metal oxide matrix (such as TiO2 , SiO2 , NiO etc) for quantifying multiple analytes are then elucidated. The effect of high temperature as well as gas environments including corrosive atmospheres on such nanocomposites, and the different approaches to comprehend them are presented. Finally, techniques and methods to improve on the challenges associated with the realization and integration such Au-metal oxide plasmonic nanostructures for applications such as combustion monitoring, fuel cells, and other applications are discussed.

6.
Nanoscale ; 7(42): 17798-804, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26456790

RESUMO

Near-infrared (NIR) thermal energy harvesting has been demonstrated for gold nanorods (AuNRs), allowing concentration dependent, ppm-level, gas detection of H2, CO, and NO2 at 500 °C without using a white light source. Part-per-million detection capabilities of the gold nanorods are demonstrated with a factor of 11 reduction in collection times in the NIR as compared to measurements made in the visible light region. Decreased collection times are enabled by an increase in S : N ratio, which allowed a demonstration of selectivity through the use of both full spectral and a reduced spectral-based principal component analysis. Furthermore, low temperature thermal imaging spectra have been obtained at sample temperatures ranging from 275-500 °C, showing the possibility of energy harvested gas sensing at lower temperatures. These findings are promising in the area of miniaturizing plasmonic gas sensing technology and integration in areas such as gas turbines.

7.
ACS Nano ; 8(10): 10953-62, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25280004

RESUMO

Detection of gases such as H2, CO, and NO2 at 500 °C or greater requires materials with thermal stability and reliability. One of the major barriers toward integration of plasmonic-based chemical sensors is the requirement of multiple components such as light sources and spectrometers. In this work, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis offers a novel path toward simplification and integration of plasmonic-based sensing methods.

8.
Beilstein J Nanotechnol ; 3: 712-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23213635

RESUMO

Monitoring emissions in high-temperature-combustion applications is very important for regulating the discharge of gases such as NO(2) and CO as well as unburnt fuel into the environment. This work reports the detection of H(2) and CO gases by employing a metal-metal oxide nanocomposite (gold-yttria stabilized zirconia (Au-YSZ)) film fabricated through layer-by-layer physical vapor deposition (PVD). The change in the peak position of the localized surface plasmon resonance (LSPR) was monitored as a function of time and gas concentration. The responses of the films were preferential towards H(2), as observed from the results of exposing the films to the gases at temperatures of 500 °C in a background of dry air. Characterization of the samples by XRD and SEM enabled the correlation of material properties with the differences in the CO- and H(2)-induced LSPR peak shifts, including the relative desensitization towards NO(2). Sensing characteristics of films with varying support thicknesses and metal-particle diameters have been studied, and the results are presented. A comparison has been made to films fabricated through co-sputtered PVD, and the calibration curves of the sensing response show a preferential response towards H(2). The distinction between H(2) and CO responses is also seen through the use of principal-component analysis (PCA). Such material arrangements, which can be tuned for their selectivity by changing certain parameters such as particle size, support thickness, etc., have direct applications within optical chemical sensors for turbine engines, solid-oxide fuel cells, and other high-temperature applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...