Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 17(9): e2000342, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32597554

RESUMO

A variety of 1,3-dihydro-2H-1,4-benzodiazepin-2-one azomethines and 1,3-dihydro-2H-1,4-benzodiazepin-2-one benzamide were prepared, characterized and evaluated for the anticonvulsant activity in the rat using picrotoxin-induced seizure model. The prepared 1,3-dihydro-2H-1,4-benzodiazepin-2-one azomethine derivatives emerged potentially anticonvulsant molecular scaffolds exemplified by compounds, 7-{(E)-[(4-nitrophenyl)methylidene]amino}-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one, 7-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one, 7-{(E)-[(4-bromo-2,6-difluorophenyl)methylidene]amino}-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one and 7-[(E)-{[3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl]methylidene}amino]-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one. All these four compounds have shown substantial decrease in the wet dog shake numbers and grade of convulsions with respect to the standard drug diazepam. The most active compound, 7-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one, exhibited 74 % protection against convulsion which was higher than the standard drug diazepam. Furthermore, to identify the binding mode of the interaction amongst the target analogs and binding site of the benzodiazepine receptor, molecular docking study and molecular dynamic simulation were carried out. Additionally, in silico pharmacokinetic and toxicity predictions of target compounds were carried out using AdmetSAR tool. Results of ADMET studies suggest that the pharmacokinetic parameters of all the target compounds were within the acceptable range to become a potential drug candidate as antiepileptic agents.


Assuntos
Anticonvulsivantes/farmacologia , Azepinas/farmacologia , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Azepinas/síntese química , Azepinas/química , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Modelos Moleculares , Estrutura Molecular , Picrotoxina/administração & dosagem , Ratos , Ratos Wistar , Bases de Schiff/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia , Convulsões/induzido quimicamente
2.
Curr Org Synth ; 17(8): 679-684, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32562525

RESUMO

Thiamine hydrochloride is reported to be a highly competent promoter for the synthesis of bis(indolyl)methanes under solvent free conditions using microwave irradiation and ultrasonicator heating in aqueous media. Vitamin B1 is an economical, non-toxic, nonflammable and water soluble green organocatalyst. Moreover, the simple approach, easily operational, short reaction time, high yield and using a little quantity of thiamine hydrochloride makes this method an alternative approach. Present protocol is a simple and eco-friendly approach for the synthesis of bis(indolyl)methanes under microwave and ultrasonicator conditions.

3.
Iran J Pharm Res ; 11(2): 635-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24250488

RESUMO

Murraya koenigii L. (Rutaceae), commonly known as curry leaf tree, closely associated with south India where the word "curry" originates from the Tamil "kari" for spiced sauces. Curry leaves are a rich source of carbazole alkaloids which possess various biological activities such as antitumor, antioxidant and anti-inflammatory. Curry leaf has a potential role in the treatment of diabetes. Reserpine-induced orofacial dyskinesia in rats is an animal model of tardive dyskinesia that has been linked with free radical generation and oxidative stress. In this study, neuroprotective potential and in-vivo antioxidant status of methanol extract of the leaves of Murraya koenigii (MEMK) in reserpine-induced orofacial dyskinesia are investigated. Reserpine was used to induce orofacial dyskinesia. The effect of MEMK on locomotion and catalepsy was studied using Open-field apparatus and Bar-test, respectively. The effect of MEMK on the levels of protective anti-oxidant enzymes i.e. superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSH) and inhibited lipid peroxidation (LPO) in forebrain region were investigated in reserpine-treated animals. Results demonstrated that the MEMK significantly inhibited the reserpine-induced vacuous chewing movements (VCM), tongue protrusion (TP), orofacial burst (OB) and catalepsy. MEMK significantly increased the number of squares traversed and rearing in open field apparatus. Treatment with MEMK significantly restored the levels of protective anti-oxidant enzymes i.e. SOD, CAT, GSH and inhibited LPO in forebrain region when compared with reserpine. It also inhibited haloperidol-induced catalepsy. The present study concludes that the oxidative stress might play an important role in reserpine-induced abnormal oral movements, and Murraya koenigii may have great potential in the treatment of neuroleptic-induced orofacial dyskinesia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...