Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2019: 830-836, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374733

RESUMO

Prosthetics need to incorporate the users sense of proprioception into the control paradigm to provide intuitive control, and reduce training times and prosthetic rejection rates. In the absence of functional tasks with a prosthetic, virtual cursor control tasks have been used to train users to control multiple degrees of freedom. In this study, A proportional position signal was derived from the cross-sectional ultrasound images of the users forearm. We designed a virtual cursor control task with one degree of freedom to measure the users ability to repeatably and accurately acquire different levels of muscle flexion, using only their sense of proprioception. The experiment involved a target acquisition task, where the cursors height corresponded to the extent of muscle flexion. Users were asked to acquire targets on a screen. Visual feedback was disabled at certain times during the experiment, to isolate the effect of proprioception. We found that as visual feedback was taken away from the subjects, position error increased but their stability error did not change significantly. This indicates that users are not perfect at using only their proprioceptive sense to reacquire a level of muscle flexion, in the absence of haptic or visual feedback. However, they are adept at retaining an acquired flexion level without drifting. These results could help to quantify the role of proprioception in target acquisition tasks, in the absence of haptic or visual feedback.


Assuntos
Membros Artificiais , Eletromiografia , Propriocepção/fisiologia , Ultrassom , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Fatores de Tempo
2.
Sci Rep ; 9(1): 9499, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263115

RESUMO

Technological advances in multi-articulated prosthetic hands have outpaced the development of methods to intuitively control these devices. In fact, prosthetic users often cite "difficulty of use" as a key contributing factor for abandoning their prostheses. To overcome the limitations of the currently pervasive myoelectric control strategies, namely unintuitive proportional control of multiple degrees-of-freedom, we propose a novel approach: proprioceptive sonomyographic control. Unlike myoelectric control strategies which measure electrical activation of muscles and use the extracted signals to determine the velocity of an end-effector; our sonomyography-based strategy measures mechanical muscle deformation directly with ultrasound and uses the extracted signals to proportionally control the position of an end-effector. Therefore, our sonomyography-based control is congruent with a prosthetic user's innate proprioception of muscle deformation in the residual limb. In this work, we evaluated proprioceptive sonomyographic control with 5 prosthetic users and 5 able-bodied participants in a virtual target achievement and holding task for 5 different hand motions. We observed that with limited training, the performance of prosthetic users was comparable to that of able-bodied participants and thus conclude that proprioceptive sonomyographic control is a robust and intuitive prosthetic control strategy.


Assuntos
Algoritmos , Amputados , Membros Artificiais , Eletromiografia , Propriocepção , Extremidade Superior , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...