Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biochem Biophys Res Commun ; 729: 150356, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986261

RESUMO

Analysis of pneumococcal polysaccharides (PnPs) has been an arduous task, especially in similar serotypes. Pneumococci invades the host immune response by modulating capsule structure with small genetic changes making them indistinguishable from similar serotypes by conventional modes of analysis. The new serotype 24F causing invasive pneumococcal-resistant infection is an analytical challenge for its analysis as related serotypes 24A and 24B Ps share a common backbone. The difference in the branched chain which contains arabinitol and ribitol in 24F and 24B respectively are stereoisomers making their identification even more challenging. The composition analysis by GC-MS revealed distinct peaks for arabinitol in 24F and 24A Ps and ribitol in Pn 24B serotype polysaccharide. The mass spectral analysis confirmed their identification along with a heterologous cross-reactivity which confirmed anti-Pn-24F mAb reactive to Pn 24B than Pn 24A. The quantitative analysis of pneumococcal 24A, 24B and 24F using GC-MS showed sensitive analysis over the concentration range 3.125-200 µg/mL with regression coefficient >0.99 making ideal modality for the characterization, identification, and quantitation of pneumococcal 24A, 24B and 24F similar serotypes.

2.
Electrophoresis ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700202

RESUMO

Current postexposure prophylaxis of rabies includes vaccines, human rabies immunoglobulin (RIG), equine RIG, and recombinant monoclonal antibodies (mAb). In the manufacturing of rabies recombinant mAb, charge variants are the most common source of heterogeneity. Charge variants of rabies mAb were isolated by salt gradient cation exchange chromatography (CEX) to separate acidic and basic and main charge variants. Separated variants were further extensively characterized using orthogonal analytical techniques, which include secondary and tertiary structure determination by far and near ultraviolet circular dichroism spectroscopy. Charge and size heterogeneity were evaluated using CEX, isoelectric focusing (IEF), capillary-IEF, size exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and western blotting. Antigen binding affinity was assessed by enzyme linked immuno-sorbent assay and rapid florescence foci inhibition test. Results from structural and physicochemical characterizations concluded that charge variants are formed due to posttranslational modification demonstrating that the charge heterogeneity, these charge variants did neither show any considerable physicochemical change nor affect its biological function. This study shows that charge variants are effective components of mAb and there is no need of deliberate removal, until biological functions of rabies mAb will get affected.

3.
Lancet Infect Dis ; 24(6): 639-649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408457

RESUMO

BACKGROUND: Dengue is highly prevalent in Asia and Latin America and has no specific dengue antiviral treatment. A recombinant monoclonal antibody (VIS513) that neutralises all four serotypes of the dengue virus has been developed in India. After confirmation of safety and efficacy in preclinical studies, it was tested in a first-in-human study to assess the safety and pharmacokinetics. METHODS: This was a partially blind (observer-blind), randomised, placebo-controlled, phase 1, single ascending dose study in Australia. Participants were dengue naive, healthy adults (aged 18-45 years) with no clinically significant disorders or immunosuppressive conditions. Four dose levels of dengue monoclonal antibody (ie, 1 mg/kg, 3 mg/kg, 7 mg/kg, and 12 mg/kg; n=4 for 1 mg/kg and n=10 each for 3 mg/kg, 7 mg/kg, and 12 mg/kg doses) were assessed in a dose-ascending way with a placebo control (n=2 for each dose cohort, total n=6) for each cohort except for 1 mg/kg. Within each cohort, participants were first randomly assigned (1:1) in a sentinel sub-cohort and then randomly assigned (9:1) in an expansion sub-cohort to dengue monoclonal antibody or placebo except for the 1 mg/kg cohort. Participants, investigators, and outcome assessors were masked and treatment administrators were not masked. 40 participants received a single intravenous injection or infusion of either dengue monoclonal antibody or placebo over a period of 3 min to 2 h and were followed up until day 85. The primary outcomes were proportion of participants with adverse events and serious adverse events (SAEs) up to 84 days after dosing whereas the secondary outcomes were to assess the pharmacokinetic profile of dengue monoclonal antibody and to assess the presence of anti-drug antibody (ADA) to dengue monoclonal antibody. All participants were included in the safety analysis and the pharmacokinetic population involved participants receiving dengue monoclonal antibody. This study is registered with ClinicalTrials.gov, NCT03883620. FINDINGS: Between March 22 and Dec 23, 2019, 40 healthy adults were randomly assigned and all completed the study. There were no SAEs reported. None of the placebo recipients (n=6) reported any adverse events. 31 (91%) of 34 participants receiving dengue monoclonal antibody reported 143 adverse events (1 mg/kg: four [100%] of four participants; 3 mg/kg: ten [100%] of ten participants; 7 mg/kg: seven [70%] of ten participants; 12 mg/kg: ten [100%] of ten participants). Of these 143 adverse events, 80 were treatment-related adverse events in 28 (82%) of 34 participants. Headache (16 [47%] of 34), infusion reaction (11 [32%] of 34), lymphopenia (seven [21%] of 34), fatigue (five [15%] of 34), and pyrexia (four [12%] of 34) were the most common reactions. Infusion reactions were reduced in the 7 mg/kg (two [20%] of ten participants) and 12 mg/kg (three [30%] of ten) cohorts with paracetamol premedication compared with the 3 mg/kg cohort (five [50%] of ten). The majority of adverse events were grade 1 or grade 2 in severity, and resolved completely. Median maximum serum concentrations ranged from 28 µg/mL (1 mg/kg) to 525 µg/mL (12 mg/kg). The median elimination half-life ranged from 775 h (1 mg/kg) to 878 h (12 mg/kg). No ADA against dengue monoclonal antibody was detected. INTERPRETATION: Dengue monoclonal antibody was safe and well tolerated. It showed a dose-proportionate increase in pharmacokinetic exposure. These data support further evaluation of dengue monoclonal antibody in patients with dengue for safety and efficacy. FUNDING: Serum Institute of India.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Dengue , Dengue , Humanos , Adulto , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Masculino , Feminino , Austrália , Dengue/tratamento farmacológico , Adulto Jovem , Vírus da Dengue/imunologia , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade , Adolescente , Voluntários Saudáveis , Método Simples-Cego , Anticorpos Neutralizantes
4.
Anal Biochem ; 683: 115363, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866526

RESUMO

A selective and sensitive method was evaluated for quantitation of meningococcal X (Men X) polysaccharide in pentavalent meningococcal A, C, W, Y and X conjugate vaccine using different acid hydrolysis conditions like HCl, TFA, HF, HF-TFA, and HF-HCl. High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) using CarboPac PA10 column was used to identify the hydrolyzed products based on retention time and its comparison with monosaccharide standards. Complete release of glucosamine (GlcN) from Men X in monovalent bulk and pentavalent vaccine samples was achieved using HF hydrolysis at 80 °C for 2 h. The Men X HF-hydrolyzed polysaccharide to glucosamine along with the reference standard was identified using collision-induced dissociation (CID) electrospray mass spectroscopy and the MS/MS fragments of m/z 162, m/z 144 and m/z 84. Meningococcal polysaccharide concentration was determined with a correlation coefficient r2 >0.99 using polysaccharide reference standard. The serogroups A, W, and Y were converted to their monosaccharides units and quantified using this method however, milder acid hydrolysis 0.1 M HCl 80 °C 2 h for release of sialic acid for Men C polysaccharide was found to be more suitable. These methods will provide necessary tools and prove to be beneficial to laboratories developing new saccharide-based vaccine combinations.


Assuntos
Vacinas Meningocócicas , Neisseria meningitidis , Humanos , Polissacarídeos Bacterianos/análise , Polissacarídeos Bacterianos/química , Vacinas Combinadas , Hidrólise , Espectrometria de Massas em Tandem , Vacinas Meningocócicas/análise , Vacinas Meningocócicas/química , Glucosamina , Cromatografia por Troca Iônica/métodos
5.
Carbohydr Polym ; 320: 121204, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659807

RESUMO

Determining the safety, antigenicity, and immunogenicity by in vitro and in vivo studies is a prerequisite for the development of new vaccines. And this study investigated it for a vaccine made from Streptococcus pneumoniae serotypes 2, 5, 12F, 18C, and 22F. The crude CPS was purified and partially depolymerized by conventional and trifluoroacetic acid methods. 1H NMR analysis confirmed the identity of the depolymerized CPS which gave similar profiles to reference polysaccharides, except for serotype 18C which was de-O-acetylated during TFA treatment. The antigenicity of the depolymerized CPS prepared by either method was comparable to that of the native CPS for serotypes 2, 5, 18C, and 22F based on multiplex bead based competitive inhibition assay. This study demonstrated a relationship between antigenicity and immunogenicity, which offers more suitable candidates for conjugation. It was found that after partial depolymerization process, the CPS with optimal molecular size resulted in higher antigenicity. The immunogenicity of S. pneumoniae serotype 2 conjugates in mice was evaluated by opsonophagocytic assay and a multiplex bead-based assay, wherein on day 42 after immunization, the total and functional IgG titer was found to be increased by 32-fold.

6.
Vaccine ; 41(38): 5614-5621, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37532611

RESUMO

BACKGROUND: Dengue fever is an important public health problem, especially in Asia and South America. A tetravalent live attenuated dengue vaccine was manufactured in India after receipt of vaccine strains from NIAID, NIH, USA. METHODS: This was a Phase 1, double-blind, randomized, placebo-controlled study performed in 60 healthy adults of 18 to 45 years. Participants were randomized 2:1 to receive a single subcutaneous injection of either a tetravalent live attenuated dengue vaccine or placebo. Safety was assessed by unsolicited adverse events (AEs) and solicited reactions through 21 days after vaccination and serious adverse events (SAEs) through the entire study period of 180 days. Dengue viremia was assessed at baseline and on day 9, 11 and 13 post-vaccination using a plaque assay. Immunogenicity was assessed using the plaque reduction neutralization test (PRNT) assay using vaccine-matched wild virus serotypes (DENV 1, DENV 2, DENV 3 and DENV 4) at baseline and on 56-, 84- and 180-days post-vaccination. PRNT assay using circulating wild type DENV 1, DENV 2, DENV 3 and DENV 4 were done on day 1 and day 85 for a subset of 31 participants. RESULTS: 60 participants were randomized to receive dengue vaccine (n = 40) or placebo (n = 20). 23 participants (59 %) showed DENV vaccine viremia post- vaccination for any of the four serotypes with majority on day 9 and day 11. At baseline, all participants were naïve by dengue PRNT50 for all four serotypes in both the study groups except for four in the dengue vaccine group and two in the placebo group. On day 57, the GMTs of neutralizing antibodies ranged from 66.76 (95 % CI 36.63, 121.69) to 293.84 (95 % CI 192.25, 449.11) for all four serotypes in the dengue vaccine group. On day 181 though the titers declined, they still remained much higher than the baseline. The titers in the placebo group did not change after vaccination. Seroconversion through day 85 ranged from 79.5 % for DENV 1 to 100 % for DENV2 while in the placebo group, no participant showed seroconversion through day 85. Similar trends were noted when PRNT was done using wild DENV serotypes in both vaccine and placebo groups. Among solicited reactions, injection site erythema, rash, headache, fatigue, myalgia and arthralgia were reported more frequently in the vaccine group than placebo group. All solicited reactions were of grade 1 or grade 2 severity and completely resolved. One unrelated serious adverse event was reported in the vaccine group. CONCLUSION: A single dose of dengue vaccine was safe and well tolerated in adults. The vaccine was highly immunogenic with trivalent or tetravalent seroconversion and seropositivity in most of the participants. The study was funded by Serum Institute of India Pvt. Ltd., Pune, India. CLINICALTRIALS: gov: NCT04035278.


Assuntos
Vacinas contra Dengue , Dengue , Humanos , Adulto , Dengue/prevenção & controle , Anticorpos Antivirais , Vacinas Combinadas , Viremia , Índia , Vacinas Atenuadas , Anticorpos Neutralizantes , Método Duplo-Cego , Imunogenicidade da Vacina
7.
Carbohydr Res ; 531: 108878, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390792

RESUMO

Polysaccharide (Ps) activation evaluation is an imperative quality attribute in a conjugate vaccine. Pneumococcal polysaccharide (PnPs) serotypes 5, 6B, 14, 19A and 23F were cyanylated for 3 and 8 min. The cyanylated and non-cyanylated polysaccharides were methanolysed and derivatized to assess the activation of each sugar by GC-MS. The activation of 22 and 27% serotype 6B and 11 and 36% in serotype 23 F Ps at 3 and 8 min respectively showed controlled conjugation kinetics with CRM197 carrier protein estimated by SEC-HPLC and optimal absolute molar mass by SEC-MALS. The Glc and Gal are the most commonly activated sugars of all PnPs serotypes while N-acetyl sugars PneuNAc, GalNAc and Rha in serotypes 5, 14 and 19A respectively showed >50% activation which contributes to conjugate aggregate formation at 8 min compared to 3 min cyanylation. The GC-MS analysis of structural modifications at functional groups entails important information to characterize the activated polysaccharide for consistent conjugate vaccine manufacturing.


Assuntos
Vacinas Pneumocócicas , Streptococcus pneumoniae , Vacinas Conjugadas/química , Cromatografia Gasosa-Espectrometria de Massas , Vacinas Pneumocócicas/química , Polissacarídeos , Anticorpos Antibacterianos
8.
Vaccines (Basel) ; 11(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36851133

RESUMO

Children are at risk of infection from severe acute respiratory syndrome coronavirus-2 virus (SARS-CoV-2) resulting in coronavirus disease (COVID-19) and its more severe forms. New-born infants are expected to receive short-term protection from passively transferred maternal antibodies from their mothers who are immunized with first-generation COVID-19 vaccines. Passively transferred antibodies are expected to wane within first 6 months of infant's life, leaving them vulnerable to COVID-19. Live attenuated vaccines, unlike inactivated or viral-protein-based vaccines, offer broader immune engagement. Given effectiveness of live attenuated vaccines in controlling infectious diseases such as mumps, measles and rubella, we undertook development of a live attenuated COVID-19 vaccine with an aim to vaccinate children beyond 6 months of age. An attenuated vaccine candidate (dCoV), engineered to express sub-optimal codons and deleted polybasic furin cleavage sites in the spike protein of the SARS-CoV-2 WA/1 strain, was developed and tested in hamsters. Hamsters immunized with dCoV via intranasal or intramuscular routes induced high levels of neutralizing antibodies and exhibited complete protection against the SARS-CoV-2 wild-type isolates, i.e., the Wuhan-like (USA-WA1/2020) and Delta variants (B.1.617.2) in a challenge study. In addition, the dCoV formulated with the marketed measles-rubella (MR) vaccine, designated as MR-dCoV, administered to hamsters via intramuscular route, also protected against both SARS-CoV-2 challenges, and dCoV did not interfere with the MR vaccine-mediated immune response. The safety and efficacy of the dCoV and the MR-dCoV against both variants of SARS-CoV-2 opens the possibility of early immunization in children without an additional injection.

9.
Biologicals ; 81: 101664, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36791627

RESUMO

Polysaccharide vaccines essentially used in the prevention of bacterial infections are known to be good immunogens when conjugated to an immunogenic protein using various cyanylating agents. Analysis of residual cyanide in polysaccharide conjugate vaccines is an ardent task due to the complexity of the sample matrices and the lack of suitable methods. We report a selective ion chromatography method with electrochemical detection using IonPac AS7 column for estimation of residual cyanide in meningococcal serogroups A, C, W, Y and X bulk conjugates in presence of other interfering ions. Gold electrode and Ag/AgCl reference electrode ensures sensitivity and reproducibility of cyanide quantitation. The calibration curve of the method is linear having r2 ≥0.990 over the concentration range 1.45 ng/mL to 93.10 ng/mL. The recovery of cyanide in bulk conjugates ranged between 96.0% and 108.9%. The limits of detection and quantitation were 0.50 ng/mL and 1.45 ng/mL which corresponds to 0.31 ng/µg and 0.91 ng/µg of polysaccharide respectively. The method validation and feasibility study were performed using Men W and Men X bulk conjugates respectively with in house residual cyanide specification due to unavailability of pharmacopeia guidelines. The method is reproducible and can accurately quantify residual cyanide in purified meningococcal bulk conjugates.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Humanos , Cianetos , Reprodutibilidade dos Testes , Sorogrupo , Vacinas Meningocócicas/química , Infecções Meningocócicas/prevenção & controle , Polissacarídeos , Cromatografia por Troca Iônica
10.
Lancet Infect Dis ; 23(5): 609-620, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36638819

RESUMO

BACKGROUND: Three pneumococcal conjugate vaccines (PCVs) are currently licensed and WHO prequalified for supply by UN agencies. Here, we aimed to investigate the safety and immunogenicity of SIIPL-PCV compared with PHiD-CV and PCV13, when administered to infants according to a 2 + 1 schedule. METHODS: This single-centre, double-blind, active-controlled, randomised, phase 3 trial was done in Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine clinical trial facilities within two government health centres in the western region of The Gambia. Healthy, PCV-naive infants aged 6-8 weeks were enrolled if they weighed at least 3·5 kg and had no clinically significant health complaints, as determined by history and clinical examination. Eligible infants were randomly assigned (1:1:1) to receive either SIIPL-PCV, PHiD-CV, or PCV13 using permuted blocks of variable size. Parents and the trial staff assessing all study outcomes were masked to vaccine group. The first PCV vaccine was given with other routine Expanded Programme on Immunization vaccines when infants were aged 6-8 weeks (visit 1). At visit 2, routine vaccines alone (without a PCV) were administered. At visit 3, the second dose of the PCV was administered alongside other routine vaccines. At visit 4, a blood sample was collected. Visits 1-4 took place at intervals of 4 weeks. The booster PCV was administered at age 9-18 months (visit 5), with final follow-up 4 weeks after the booster (visit 6). The primary immunogenicity outcome compared the serotype-specific IgG geometric mean concentrations (GMCs) generated by SIIPL-PCV with those generated by PHiD-CV and PCV13, 4 weeks after the booster. We used descriptive 95% CIs without adjustment for multiplicity. Immunogenicity analyses were done in the per protocol population (defined as all children who received all the assigned study vaccines, who had an immunogenicity measurement available, and who had no protocol deviations that might interfere with the immunogenicity assessment). This trial was registered with the Pan African Clinical Trials Registry, PACTR201907754270299, and ClinicalTrials.gov, NCT03896477. FINDINGS: Between July 18 and Nov 14, 2019, 745 infants were assessed for study eligibility. Of these, 85 infants (11%) were ineligible and 660 (89%) were enrolled and randomly assigned to receive SIIPL-PCV (n=220), PHiD-CV (n=220), or PCV13 (n=220). 602 infants (91%) were included in the per protocol immunogenicity population. The median age at vaccination was 46 days (range 42-56). 342 infants (52%) were female and 318 (48%) were male. Post-booster serotype-specific IgG GMCs generated by SIIPL-PCV ranged from 1·54 µg/mL (95% CI 1·38-1·73) for serotype 5 to 12·46 µg/mL (11·07-14·01) for serotype 6B. Post-booster GMCs against shared serotypes generated by PHiD-CV ranged from 0·80 µg/mL (0·72-0·88) for serotype 5 to 17·31 µg/mL (14·83-20·20) for serotype 19F. Post-booster GMCs generated by PCV13 ranged from 2·04 µg/mL (1·86-2·24) for serotype 5 to 15·54 µg/mL (13·71-17·60) for serotype 6B. Post-booster IgG GMCs generated by SIIPL-PCV were higher than those generated by PHiD-CV for seven of the eight shared serotypes (1, 5, 6B, 7F, 9V, 14, and 23F). The GMC generated by serotype 19F was higher after PHiD-CV. The SIIPL-PCV to PHiD-CV GMC ratios for shared serotypes ranged from 0·64 (95% CI 0·52-0·79) for serotype 19F to 2·91 (2·47-3·44) for serotype 1. The serotype 1 GMC generated by SIIPL-PCV was higher than that generated by PCV13, whereas serotype 5, 6A, 19A, and 19F GMCs were higher after PCV13. The SIIPL-PCV to PCV13 GMC ratios ranged from 0·72 (0·60-0·87) for serotype 19A to 1·44 (1·23-1·69) for serotype 1. INTERPRETATION: SIIPL-PCV was safe and immunogenic when given to infants in The Gambia according to a 2 + 1 schedule. This PCV is expected to provide similar protection against invasive and mucosal pneumococcal disease to the protection provided by PCV13 and PHiD-CV, for which effectiveness data are available. Generating post-implementation data on the impact of SIIPL-PCV on pneumococcal disease endpoints remains important. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Anticorpos Antibacterianos , Infecções Pneumocócicas , Vacinas Pneumocócicas , Criança , Feminino , Humanos , Lactente , Masculino , Gâmbia , Imunogenicidade da Vacina , Imunoglobulina G , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/efeitos adversos , Vacinas Conjugadas/efeitos adversos
11.
Vaccine ; 41(3): 836-843, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36564277

RESUMO

Yellow fever vaccine associated neurovirulence and viscerotropism have been reported by various countries. In this study, the neurovirulence, viscerotropism and immunogenicity of yellow fever vaccine seed lots (master and working) and final product manufactured at Serum Institute of India (SII) were evaluated in cynomolgus monkeys. WHO reference virus 168-73 and Stamaril™ as a control vaccine was used for comparison. Neurovirulence and viscerotropism scores of the seed lots and final product were lower than Stamaril™. The SII seed virus and vaccine complies to the WHO requirement for neurovirulence, viscerotropism and immunogenicity, when tested in comparison to WHO reference seed virus 168/73. All challenged animals showed 100 % seroconversion as early as day 14 and neutralizing antibody titers were sustainable at day 30 in all animals.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Animais , Vírus da Febre Amarela , Febre Amarela/prevenção & controle , Primatas , Antígenos Virais , Vacinas Atenuadas
12.
Carbohydr Polym ; 294: 119783, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868758

RESUMO

A high-quality and cost-effective purification procedure is one of the most important requirements for manufacturing glycoconjugate vaccines. The goal of the present work was to devise a method for removing impurities such as protein and nucleic acid from Streptococcus pneumoniae serotype 2 capsular polysaccharides (CPS). The use of hydrogen peroxide for the reduction of impurities of crude CPS was investigated. Centrifugation followed by filtration decreased protein contaminant of the hydrogen peroxide-treated CPS to meet the limit specified by WHO. The nucleic acid impurity remaining was removed by a further step of endonuclease treatment to yield the purified CPS. Characterization of purified CPS was evaluated by various analytical techniques including 1H NMR and antigenicity by competitive inhibition assay. Various hydrogen peroxide concentrations have significant impact on the antigenic property of CPS. Whereas, optimum process conditions can preserve the native characteristics of CPS.


Assuntos
Peróxido de Hidrogênio , Ácidos Nucleicos , Cápsulas Bacterianas/química , Endonucleases/análise , Endonucleases/metabolismo , Peróxido de Hidrogênio/metabolismo , Polissacarídeos Bacterianos/química , Sorogrupo
14.
Carbohydr Res ; 512: 108503, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35085789

RESUMO

Partial depolymerization of bacterial capsular polysaccharides (CPS) is an essential process carried out before its use as an antigenic preparation in a vaccine industry. Choice of CPS depolymerization methods depends on the process robustness, reproducibility, yield, retention of CPS bioactivity, etc. Partial depolymerization methods based on chemicals, enzymes, mechanical, thermal, etc. have been subject of many investigations before. Partial depolymerization of Streptococcus pneumoniae serotype 2 purified CPS was conducted by methods such as acid hydrolysis, microfluidization, ultrasonication, thermal and microwave. Partial depolymerization of the CPS was evaluated by size exclusion high performance liquid chromatography, whereas structural identity and conformity of CPS was ensured by 1H NMR spectroscopy. The antigenicity of CPS was assessed by bead based competitive inhibition assay. Microwave and thermal methods effectively depolymerized CPS and reduced the concentration of cell wall polysaccharide (CWPS) impurity, but both methods have a negative impact on the antigenicity of CPS. Whereas the trifluoroacetic acid treatment not only depolymerized the CPS but completely removed the CWPS while retaining the antigenicity of 92 ± 4% and this method is advantageous over other methods.


Assuntos
Polissacarídeos Bacterianos , Streptococcus pneumoniae , Cápsulas Bacterianas/química , Espectroscopia de Ressonância Magnética , Polissacarídeos Bacterianos/química , Reprodutibilidade dos Testes , Sorogrupo , Streptococcus pneumoniae/química
15.
J Biomol Struct Dyn ; 40(24): 13812-13822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34726113

RESUMO

The linking of polysaccharide in glycoconjugate vaccine with carrier protein is an imperative step to develop a strong memory response. The excessive use of similar carrier protein known to result in bystander immunity warrants an urgent need for new carrier protein. The preparation of the glycoconjugate vaccine using cyanylation chemistry is to link the active cyanate ester site of polysaccharide with the carrier protein. In the present study, transferrin binding protein-B (Tbp-B) has been explored as a new carrier protein to develop in silico pneumococcal polysaccharide serotype-5 (PnPs-5) conjugate vaccine. The homology model of Tbp-B was constructed using the Prime module and stereochemically validated using ProSA, PDBsum and ProQ. The selected model revealed a Z-score of -5.6 within the X-ray region in ProSA analysis, LGscore: 9.776, and MaxSub: 0.8 in protein quality predictor suggesting its preferred use. Loop modeling and active site analysis followed by in silico PnPs-5 activation with cyanalyting agent CDAP was docked with Tbp-B using Glide module. The complex stability of cyanate esters with Tbp-B, analyzed by molecular dynamics (MD) simulation, revealed an average RMSD of 2.49 Å for its binding to the receptor. The RMSF values of cyanate ester-1, -2, and -3 were observed to be 1.06, 1.39 and 0.79 Å, respectively. The higher RMSF of 1.39 Å of cyanate ester-2 was further found unstable which corroborates its non-binding to the protein and also incurring conformational changes to a carrier protein. Molecular simulations revealed that cyanate ester-1 and cyanate ester-3 formed stable conjugates with carrier protein Tbp-B. Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Transporte , Neisseria meningitidis , Proteínas de Transporte/metabolismo , Proteína B de Ligação a Transferrina/metabolismo , Antígenos/metabolismo , Neisseria meningitidis/metabolismo , Glicoconjugados/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
16.
J Pharm Biomed Anal ; 209: 114536, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34953414

RESUMO

Bacterial lipopolysaccharide (LPS) responsible for endotoxin effect induces inflammatory reactions. The endotoxins are difficult to separate from the gram-negative polysaccharide (PS) during polysaccharide purification. The most common method to quantify LPS is the limulus amebocyte lysate (LAL) test which interferes with the agents used during PS purification. The gas chromatography-mass spectrometry (GC-MS) provides a suitable alternative by estimating lipid-A chain anchored 3-hydroxy fatty acid methyl ester (FAME) to estimate LPS however, there are no reports of its application in natural polysaccharides used for vaccine preparation. The transesterification of LPS and meningococcal PS yielded primary target 3-O-acetylated myristic acid which was detected by GC-MS and provided quantitative estimation of endotoxin. The GC-MS method was found in agreement with the LAL values showing lower endotoxin content< 10Eu/µg in meningococcal C and Y serogroup polysaccharides in comparison to higher endotoxin 177-523 Eu/µg in meningococcal A, W and X serogroups. The high endotoxin content in purified polysaccharide was attributed to it being detected in its intermediate stage by GC-MS unlike the LAL test. Thus GC-MS serves as a valuable method for endotoxin monitoring and quantitation in gram-negative meningococcal intermediate and purified PS during vaccine preparation.


Assuntos
Neisseria meningitidis , Endotoxinas/análise , Cromatografia Gasosa-Espectrometria de Massas , Polissacarídeos , Sorogrupo , Vacinas Conjugadas
17.
Pathogens ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451392

RESUMO

Towards achieving the goal of eliminating epidemic outbreaks of meningococcal disease in the African meningitis belt, a pentavalent glycoconjugate vaccine (NmCV-5) has been developed to protect against Neisseria meningitidis serogroups A, C, Y, W and X. MenA and X polysaccharides are conjugated to tetanus toxoid (TT) while MenC, Y and W polysaccharides are conjugated to recombinant cross reactive material 197 (rCRM197), a non-toxic genetic variant of diphtheria toxin. This study describes quality control testing performed by the manufacturer, Serum Institute of India Private Limited (SIIPL), and the independent control laboratory of the U.K. (NIBSC) on seven clinical lots of the vaccine to ensure its potency, purity, safety and consistency of its manufacturing. In addition to monitoring upstream-manufactured components, samples of drug substance, final drug product and stability samples were evaluated. This paper focuses on the comparison of the vaccine's critical quality attributes and reviews key indicators of its stability and immunogenicity. Comparable results were obtained by the two laboratories demonstrating sufficient levels of polysaccharide O-acetylation, consistency in size of the bulk conjugate molecules, integrity of the conjugated saccharides in the drug substance and drug product, and acceptable endotoxin content in the final drug product. The freeze-dried vaccine in 5-dose vials was stable based on molecular sizing and free saccharide assays. Lot-to-lot manufacturing consistency was also demonstrated in preclinical studies for polysaccharide-specific IgG and complement-dependent serum bactericidal activity for each serogroup. This study demonstrates the high quality and stability of NmCV-5, which is now undergoing Phase 3 clinical trials in Africa and India.

18.
N Engl J Med ; 384(22): 2115-2123, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34077644

RESUMO

BACKGROUND: Neisseria meningitidis serogroups A, B, C, W, X, and Y cause outbreaks of meningococcal disease. Quadrivalent conjugate vaccines targeting the A, C, W, and Y serogroups are available. A pentavalent vaccine that also includes serogroup X (NmCV-5) is under development. METHODS: We conducted a phase 2, observer-blinded, randomized, controlled trial involving Malian children 12 to 16 months of age. Participants were assigned in a 2:2:1 ratio to receive nonadjuvanted NmCV-5, alum-adjuvanted NmCV-5, or the quadrivalent vaccine MenACWY-D, administered intramuscularly in two doses 12 weeks apart. Participants were followed for safety for 169 days. Immunogenicity was assessed with an assay for serum bactericidal antibody (SBA) with rabbit complement on days 0, 28, 84, and 112. RESULTS: A total of 376 participants underwent randomization, with 150 assigned to each NmCV-5 group and 76 to the MenACWY-D group; 362 participants received both doses of vaccine. A total of 1% of the participants in the nonadjuvanted NmCV-5 group, 1% of those in the adjuvanted NmCV-5 group, and 4% of those in the MenACWY-D group reported local solicited adverse events; 6%, 5%, and 7% of the participants, respectively, reported systemic solicited adverse events. An SBA titer of at least 128 was seen in 91 to 100% (for all five serotypes) of the participants in the NmCV-5 groups and in 36 to 99% (excluding serogroup X) of those in the MenACWY-D group at day 84 (before the second dose); the same threshold was met in 99 to 100% (for all five serotypes) of the participants in the NmCV-5 groups and in 92 to 100% (excluding serogroup X) of those in the MenACWY-D group at day 112. Immune responses to the nonadjuvanted and adjuvanted NmCV-5 formulations were similar. CONCLUSIONS: No safety concerns were identified with two doses of NmCV-5. A single dose of NmCV-5 elicited immune responses that were similar to those observed with two doses of MenACWY-D. Adjuvanted NmCV-5 provided no discernible benefit over nonadjuvanted NmCV-5. (Funded by the U.K. Foreign, Commonwealth, and Development Office; ClinicalTrials.gov number, NCT03295318.).


Assuntos
Imunogenicidade da Vacina , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Adjuvantes Imunológicos , Compostos de Alúmen , Feminino , Humanos , Lactente , Injeções Intramusculares , Masculino , Mali , Vacinas Meningocócicas/efeitos adversos , Neisseria meningitidis , Sorogrupo , Método Simples-Cego , Vacinas Conjugadas/imunologia
19.
Carbohydr Polym ; 261: 117859, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766348

RESUMO

Development of an effective purification process in order to provide low cost and high-quality vaccine is the necessity of glycoconjugate vaccine manufacturing industries. In the present study, we have attempted to develop a method for simultaneous purification and depolymerization process for capsular polysaccharides (CPS) derived from Streptococcus pneumoniae serotype 2. Trifluoroacetic acid (TFA) was used to precipitate impurities which were then removed by centrifugation. It was observed that the TFA treatment could simultaneously depolymerize the CPS and purify it. The purified and depolymerized CPS was analyzed for its purity, structural identity and conformity, molecular size, antigenicity to meet desired quality specifications. The obtained results showed that the purification and depolymerization of S. pneumoniae serotype 2 CPS did not affect the antigenicity of CPS.


Assuntos
Cápsulas Bacterianas/química , Polimerização/efeitos dos fármacos , Polissacarídeos Bacterianos/isolamento & purificação , Streptococcus pneumoniae/efeitos dos fármacos , Ácido Trifluoracético/farmacologia , Cápsulas Bacterianas/efeitos dos fármacos , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Imunogenicidade da Vacina/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Infecções Pneumocócicas/prevenção & controle , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/metabolismo , Sorogrupo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/imunologia , Vacinas Atenuadas/química , Vacinas Atenuadas/imunologia
20.
Hum Vaccin Immunother ; 17(8): 2670-2677, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33625961

RESUMO

Pneumococcal conjugate vaccines (PCVs) have proven to be the best way to prevent severe childhood pneumococcal disease but until recently have been difficult for many countries to afford sustainably. In 2008, the Serum Institute of India, Pvt. Ltd. and PATH entered into a collaboration, funded in part by the Bill & Melinda Gates Foundation, to respond to this problem by developing a PCV designed to be affordable, accessible, and protective against the pneumococcal serotypes causing the most morbidity and mortality in low- and middle-income countries. The resulting 10-valent PCV (PNEUMOSIL®) received World Health Organization prequalification in December 2019 - making it just the third PCV to be certified as an option for Gavi, the Vaccine Alliance-eligible countries - and is being made available at a Gavi price of US$2/dose. The task of developing a state-of-the-art, yet lower-priced, PCV required public-private collaboration across geographies and yielded a variety of successes and learnings useful to the vaccine development field. Key among the learnings were factors related to manufacturing strategy and optimization, serotype selection, flexibility, early risk detection and mitigation, partner trust and continuity across similar-class products, complementary business philosophies, and early clarity of purpose.


Assuntos
Infecções Pneumocócicas , Vacinas Pneumocócicas , Criança , Humanos , Lactente , Infecções Pneumocócicas/prevenção & controle , Streptococcus pneumoniae , Vacinas Conjugadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...