Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4698, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844770

RESUMO

Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Microbolhas , Receptor de Morte Celular Programada 1 , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Doxorrubicina/análogos & derivados , Animais , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/patologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Feminino , Sistemas de Liberação de Medicamentos , Ondas Ultrassônicas , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Glioblastoma/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Polietilenoglicóis
2.
Ann Case Rep ; 9(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606301

RESUMO

Immunoglobulin G4-related disease (IgG4-RD) is a rare autoimmune disorder with an unknown etiology. Using orthogonal immune profiling and automated sequential multiplexing, we found an enhanced frequency of activated circulating B cells, antigen-presenting myeloid cells in peripheral blood, and a distinct distribution of immune cells within the CNS lesions. Prohibitin-expressing CD138+ plasma B cells and CD11c+ dendritic cells have been found interacting with T cells resulting in irmnune cell activation within the lesion. The data implicate prohibitin as a potential triggering antigen in the pathogenesis of IgG4-RD and shed light on the cellular dynamics and interactions driving IgG4-RD in the central nervous system, emphasizing the need for further studies corroborating these findings.

3.
Front Immunol ; 14: 1295218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268923

RESUMO

Understanding the spatial relationship and functional interaction of immune cells in glioblastoma (GBM) is critical for developing new therapeutics that overcome the highly immunosuppressive tumor microenvironment. Our study showed that B and T cells form clusters within the GBM microenvironment within a 15-µm radius, suggesting that B and T cells could form immune synapses within the GBM. However, GBM-infiltrating B cells suppress the activation of CD8+ T cells. To overcome this immunosuppression, we leveraged B-cell functions by activating them with CD40 agonism, IFNγ, and BAFF to generate a potent antigen-presenting B cells named BVax. BVax had improved antigen cross-presentation potential compared to naïve B cells and were primed to use the IL15-IL15Ra mechanism to enhance T cell activation. Compared to naïve B cells, BVax could improve CD8 T cell activation and proliferation. Compared to dendritic cells (DCs), which are the current gold standard professional antigen-presenting cell, BVax promoted highly proliferative T cells in-vitro that had a stem-like memory T cell phenotype characterized by CD62L+CD44- expression, high TCF-1 expression, and low PD-1 and granzyme B expression. Adoptive transfer of BVax-activated CD8+ T cells into tumor-bearing brains led to T cell reactivation with higher TCF-1 expression and elevated granzyme B production compared to DC-activated CD8+ T cells. Adoptive transfer of BVax into an irradiated immunocompetent tumor-bearing host promoted more CD8+ T cell proliferation than adoptive transfer of DCs. Moreover, highly proliferative CD8+ T cells in the BVax group had less PD-1 expression than those highly proliferative CD8+ T cells in the DC group. The findings of this study suggest that BVax and DC could generate distinctive CD8+ T cells, which potentially serve multiple purposes in cellular vaccine development.


Assuntos
Glioblastoma , Humanos , Granzimas , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Células Apresentadoras de Antígenos , Proliferação de Células , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...