Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 117(5): 1543-1557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100514

RESUMO

Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.


Assuntos
Sorghum , Sorghum/genética , Genética Reversa , Melhoramento Vegetal , Mutação , Fenótipo , Grão Comestível/genética , Metanossulfonato de Etila/farmacologia , Genoma de Planta/genética
2.
Cells ; 11(7)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406707

RESUMO

Nutritional quality improvement of rice is the key to ensure global food security. Consequently, enormous efforts have been made to develop genomics and transcriptomics resources for rice. The available omics resources along with the molecular understanding of trait development can be utilized for efficient exploration of genetic resources for breeding programs. In the present study, 80 genes known to regulate the nutritional and cooking quality of rice were extensively studied to understand the haplotypic variability and gene expression dynamics. The haplotypic variability of selected genes were defined using whole-genome re-sequencing data of ~4700 diverse genotypes. The analytical workflow identified 133 deleterious single-nucleotide polymorphisms, which are predicted to affect the gene function. Furthermore, 788 haplotype groups were defined for 80 genes, and the distribution and evolution of these haplotype groups in rice were described. The nucleotide diversity for the selected genes was significantly reduced in cultivated rice as compared with that in wild rice. The utility of the approach was successfully demonstrated by revealing the haplotypic association of chalk5 gene with the varying degree of grain chalkiness. The gene expression atlas was developed for these genes by analyzing RNA-Seq transcriptome profiling data from 102 independent sequence libraries. Subsequently, weighted gene co-expression meta-analyses of 11,726 publicly available RNAseq libraries identified 19 genes as the hub of interactions. The comprehensive analyses of genetic polymorphisms, allelic distribution, and gene expression profiling of key quality traits will help in exploring the most desired haplotype for grain quality improvement. Similarly, the information provided here will be helpful to understand the molecular mechanism involved in the development of nutritional and cooking quality traits in rice.


Assuntos
Oryza , Culinária , Grão Comestível , Expressão Gênica , Haplótipos/genética , Oryza/genética , Oryza/metabolismo , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
3.
Physiol Plant ; 172(1): 258-274, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33723851

RESUMO

Tonoplast intrinsic proteins (TIPs), belonging to the aquaporin family, are transmembrane channels located mostly at the tonoplast of plant cells. The TIPs are known to transport water and many other small solutes such as ammonia, urea, hydrogen peroxide, and glycerol. In the present review, phylogenetic distribution, structure, transport dynamics, gating mechanism, sub-cellular localization, tissue-specific expression, and co-expression of TIPs are discussed to define their versatile role in plants. Based on the phylogenetic distribution, TIPs are classified into five distinct groups with aromatic-arginine (Ar/R) selectivity filters, typical pore-morphology, and tissue-specific gene expression patterns. The tissue-specific expression of TIPs is conserved among diverse plant species, more particularly for TIP3s, which are expressed exclusively in seeds. Studying TIP3 evolution will help to understand seed development and germination. The solute specificity of TIPs plays an imperative role in physiological processes like stomatal movement and vacuolar sequestration as well as in alleviating environmental stress. TIPs also play an important role in growth and developmental processes like radicle protrusion, anther dehiscence, seed germination, cell elongation, and expansion. The gating mechanism of TIPs regulates the solute flow in response to external signals, which helps to maintain the physiological functions of the cell. The information provided in this review is a base to explore TIP's potential in crop improvement programs.


Assuntos
Aquaporinas , Proteínas de Plantas , Aquaporinas/genética , Germinação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo
4.
Plant Physiol Biochem ; 162: 110-123, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667964

RESUMO

Salt stress limits plant growth and productivity by severely impacting the fundamental physiological processes. Silicon (Si) supplementation is considered one of the promising methods to improve plant resilience under salt stress. Here, the role of Si in modulating physiological and biochemical processes that get adversely affected by high salinity, is discussed. Although numerous reports show the beneficial effects of Si under stress, the precise molecular mechanism underlying this is not well understood. Questions like whether all plants are equally benefitted with Si supplementation despite having varying Si uptake capability and salinity tolerance are still elusive. This review illustrates the Si uptake and accumulation mechanism to understand the direct or indirect participation of Si in different physiological processes. Evaluation of plant responses at transcriptomics and proteomics levels are promising in understanding the role of Si. Integration of physiological understanding with omics scale information highlighted Si supplementation affecting the phytohormonal and antioxidant responses under salinity as a key factor defining improved resilience. Similarly, the crosstalk of Si with lignin and phenolic content under salt stress also seems to be an important phenomenon helping plants to reduce the stress. The present review also addressed various crucial mechanisms by which Si application alleviates salt stress, such as a decrease in oxidative damage, decreased lipid peroxidation, improved photosynthetic ability, and ion homeostasis. Besides, the application and challenges of using Si-nanoparticles have also been addressed. Comprehensive information and discussion provided here will be helpful to better understand the role of Si under salt stress.


Assuntos
Estresse Salino , Silício , Antioxidantes , Salinidade , Tolerância ao Sal , Silício/farmacologia
5.
Nanoscale Adv ; 3(14): 4019-4028, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132841

RESUMO

Silicon (Si), a beneficial element for plants, is known for its prophylactic effect under stress conditions. Many studies have documented the role of biogenic silica (bulk-Si) in alleviating biotic and abiotic stresses in plants. The scarce amount of the plant-available form of Si (monosilicic acid) in most of the cultivated soil and the limited efficacy of silicate fertilizers (bulk-Si) are the major concerns for the exploration of Si-derived benefits. In this regard, recent advances in nanotechnology have opened up new avenues for crop improvement, where plants can derive benefits associated with Si nanoparticles (SiNPs). Most of the studies have shown the positive effect of SiNPs on the growth and development of plants specifically under stress conditions. In contrast, a few studies have also reported their toxic effects on some plant species. Hence, there is a pertinent need for elaborative research to explore the utility of SiNPs in agriculture. The present review summarizes SiNP synthesis, application, uptake, and role in stimulating plant growth and development. The advantages of SiNPs over conventional bulk-Si fertilizers in agriculture, their efficacy in different plant species, and safety concerns have also been discussed. The gaps in our understanding of various aspects of SiNPs in relation to plants have also been highlighted, which will guide future research in this area. The increased attention towards SiNP-related research will help to realize the true potential of SiNPs in agriculture.

6.
Genes (Basel) ; 11(12)2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256228

RESUMO

Metacaspases (MCs), a class of cysteine-dependent proteases found in plants, fungi, and protozoa, are predominately involved in programmed cell death processes. In this study, we identified metacaspase genes in cultivated and wild rice species. Characterization of metacaspase genes identified both in cultivated subspecies of Oryza sativa, japonica, and indica and in nine wild rice species was performed. Extensive computational analysis was conducted to understand gene structures, phylogenetic relationships, cis-regulatory elements, expression patterns, and haplotypic variations. Further, the haplotyping study of metacaspase genes was conducted using the whole-genome resequencing data publicly available for 4726 diverse genotype and in-house resequencing data generated for north-east Indian rice lines. Sequence variations observed among wild and cultivated rice species for metacaspase genes were used to understand the duplication and neofunctionalization events. The expression profiles of metacaspase genes were analyzed using RNA-seq transcriptome profiling in rice during different developmental stages and stress conditions. Real-time quantitative PCR analysis of candidate metacaspase genes in rice cultivars Pusa Basmati-1 in response to Magnaporthe oryzae infection indicated a significant role in the disease resistance mechanism. The information provided here will help to understand the evolution of metacaspases and their role under stress conditions in rice.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Oryza/genética , Regulação da Expressão Gênica de Plantas/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...