Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Barriers ; : 2221632, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294075

RESUMO

The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.

2.
Micromachines (Basel) ; 12(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802208

RESUMO

There is increasing interest in miniaturized technologies in diagnostics, therapeutic testing, and biomedicinal fundamental research. The same is true for the dermal studies in topical drug development, dermatological disease pathology testing, and cosmetic science. This review aims to collect the recent scientific literature and knowledge about the application of skin-on-a-chip technology in drug diffusion studies, in pharmacological and toxicological experiments, in wound healing, and in fields of cosmetic science (ageing or repair). The basic mathematical models are also presented in the article to predict physical phenomena, such as fluid movement, drug diffusion, and heat transfer taking place across the dermal layers in the chip using Computational Fluid Dynamics techniques. Soon, it can be envisioned that animal studies might be at least in part replaced with skin-on-a-chip technology leading to more reliable results close to study on humans. The new technology is a cost-effective alternative to traditional methods used in research institutes, university labs, and industry. With this article, the authors would like to call attention to a new investigational family of platforms to refresh the researchers' theranostics and preclinical, experimental toolbox.

3.
J Colloid Interface Sci ; 344(2): 513-20, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20153862

RESUMO

The electro-osmotic flow of a viscoelastic fluid between parallel plates is investigated analytically. The rheology of the fluid is described by the Phan-Thien-Tanner model. This model uses the Gordon-Schowalter convected derivative, which leads to a non-zero second normal stress difference in pure shear flow. A nonlinear Poisson-Boltzmann equation governing the electrical double-layer field and a body force generated by the applied electrical potential field are included in the analysis. Results are presented for the velocity and stress component profiles in the microchannel for different parametric values that characterize this flow. Equations for the critical shear rates and maximum electrical potential that can be applied to maintain a steady fully developed flow are derived and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...