Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 31(22): 224001, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32053794

RESUMO

Resonant optical mode excitations in semiconductor nanowires result in enhanced absorptions. Nominally, only the diameter dependent radial mode excitations have been considered for the increased absorption. In this paper, we try to understand how the length of the nanowires affects the resonant wavelength and peak absorption wavelengths. We answer two questions viz (1) at what minimum length are radial optical modes stabilized and dominate the absorption characteristics and (2) do longitudinal modes play a role in absorption characteristics especially in determining the resonant wavelength. Two different semiconductors are studied viz silicon and gallium arsenide. We find that even nanowires as short as 200 nm exhibit absorption characteristics dominated by the radial mode excitation. However, for lengths smaller than 200 nm, the optical characteristics are dominated by scattering. Further, we observe that longitudinal modes are excited in low absorption semiconductor materials like silicon for lengths up to 700 nm and the absorption peak depends both on the diameter and the wavelength. Further, shorter length nanowires may have higher absorption than the longer ones in this regime. We also observed that scattering from the nanowires is less than 2% of the incident light. For higher absorption semiconductor like GaAs, absorption characteristics are mainly determined by the radial mode excitations even for shorter lengths. The results provide further insight into the radial mode excitations in semiconductor nanowires.

2.
Nanotechnology ; 28(23): 235301, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28448274

RESUMO

A novel fabrication method using controlled sacrificial etching of the mask is utilized to fabricate tapered vertical GaAs nanowire arrays. Experimental measurements of the absorption characteristics show that the tapered nanowires absorb over a broadband range as compared to cylindrical ones. The broadband characterization is verified by using optical modeling and results from improved coupling of the nanowires due to distinct radial HE modes being excited separately in the taper and the cylindrical part. The absorption is found to be more broadband as compared to conical nanowires studied so far.

3.
Nanotechnology ; 27(49): 495203, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834308

RESUMO

We demonstrate submicron thick platform integrating amorphous silicon nanowires and thin-films achieving vivid colors in transmission and reflection. The platform nearly doubles the absorption efficiency compared to the starting thin-film without much compromising with color diverseness. The structural colors can be changed over a wide range by changing the diameters of the nanowires while still keeping the absorption efficiency higher than starting thin-film. The optical response of the platform is conceptually understood for different diameters combined with different thin-film thicknesses indicating the presence of leaky waveguide modes and coupled cavity modes. Our proposed platform can enable architectural low price colorful solar cells on transparent substrates.

4.
Nanotechnology ; 27(24): 245708, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27172276

RESUMO

Gallium arsenide nanowires have shown considerable promise for use in applications in which the absorption of light is required. When the nanowires are oriented vertically, a considerable amount of light can be absorbed, leading to significant heating effects. Thus, it is important to understand the threshold power densities that vertical GaAs nanowires can support, and how the nanowire morphology is altered under these conditions. Here, resonant photo-thermal modification of vertical GaAs nanowires was studied using both Raman spectroscopy and electron microscopy techniques. Resonant waveguiding, and subsequent absorption of the excited optical mode reduces the irradiance vertical GaAs nanowires can support relative to horizontal ones, by three orders of magnitude before the onset of structural changes occur. A power density of only 20 W mm(-2) was sufficient to induce local heating in the nanowires, resulting in the formation of arsenic species. Upon further increasing the power, a hollow nanowire morphology was realized. These findings are pertinent to all optical applications and spectroscopic measurements involving vertically oriented GaAs nanowires. Understanding the optical absorption limitations, and the effects of exceeding these limitations will help improve the development of all III-V nanowire devices.

5.
Opt Lett ; 41(9): 2045-8, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27128070

RESUMO

We experimentally compared the reflectance between ordered and disordered silicon nanowires to observe the evidence of photonic crystal modes. For similar diameters, the resonance peaks for the ordered nanowires at a spacing of 400 nm was at a shorter wavelength than the disordered nanowires, consistent to the excitation of photonic crystal modes. Furthermore, the resonant wavelength didn't shift while changing the density of the disordered nanowires, whereas there was a significant shift observed in the ordered ones. At an ordered spacing of 800 nm, the resonance wavelength approached that of the disordered structures, indicating that the ordered structures were starting to behave like individual waveguides. To our knowledge, this is the first direct experimental observation of photonic crystal modes in vertical periodic silicon nanowire arrays.

6.
Nanotechnology ; 27(14): 145703, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906427

RESUMO

We experimentally demonstrate a new optical platform by integrating hydrogenated amorphous silicon nanowire arrays with thin films deposited on transparent substrates like glass. A 535 nm thick thin film is anisotropically etched to fabricate vertical nanowire arrays of 100 nm diameter arranged in a square lattice. Adjusting the nanowire length, and consequently the thin film thickness permits the optical properties of this configuration to be tuned for either transmission filter response or enhanced broadband absorption. Vivid structural colors are also achieved in reflection and transmission. The optical properties of the platform are investigated for three different etch depths. Transmission filter response is achieved for a configuration with nanowires on glass without any thin film. Alternatively, integrating thin film with nanowires increases the absorption efficiency by ∼97% compared to the thin film starting layer and by ∼78% over nanowires on glass. The ability to tune the optical response of this material in this fashion makes it a promising platform for high performance photovoltaics, photodetectors and sensors.

7.
Nano Lett ; 14(10): 5820-6, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25233265

RESUMO

The photothermal properties of vertically etched gallium arsenide nanowire arrays are examined using Raman spectroscopy. The nanowires are arranged in square lattices with a constant pitch of 400 nm and diameters ranging from 50 to 155 nm. The arrays were illuminated using a 532 nm laser with an incident energy density of 10 W/mm(2). Nanowire temperatures were highly dependent on the nanowire diameter and were determined by measuring the spectral red-shift for both TO and LO phonons. The highest temperatures were observed for 95 nm diameter nanowires, whose top facets and sidewalls heated up to 600 and 440 K, respectively, and decreased significantly for the smaller or larger diameters studied. The diameter-dependent heating is explained by resonant coupling of the incident laser light into optical modes of the nanowires, resulting in increased absorption. Photothermal activity in a given nanowire diameter can be optimized by proper wavelength selection, as confirmed using computer simulations. This demonstrates that the photothermal properties of GaAs nanowires can be enhanced and tuned by using a photonic lattice structure and that smaller nanowire diameters are not necessarily better to achieve efficient photothermal conversion. The diameter and wavelength dependence of the optical coupling could allow for localized temperature gradients by creating arrays which consist of different diameters.

8.
Nanotechnology ; 25(30): 305303, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008170

RESUMO

We report fabrication methods, including metal masks and dry etching, and demonstrate highly ordered vertical gallium arsenide nanowire arrays. The etching process created high aspect ratio, vertical nanowires with insignificant undercutting from the mask, allowing us to vary the diameter from 30 nm to 400 nm with a pitch from 250 nm to 1100 nm and length up to 2.2 µm. A diameter to pitch ratio of ∼68% was achieved. We also measured the reflectance from the nanowire arrays and show experimentally diameter-dependent strong absorption peaks resulting from resonant optical mode excitations within these nanowires. The reflectance curves match very well with simulations. The work done here paves the way towards achieving high efficiency solar cells and tunable photodetectors using III-V nanowires.

9.
Small ; 10(1): 144-51, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23784866

RESUMO

Tunable structural color generation from vertical silicon nanowires arranged in different square lattices is demonstrated. The generated colors are adjustable using well-defined Bragg diffraction theory, and only depend on the lattice spacing and angles of incidence. Vivid colors spanning from bright red to blue are easily achieved. In keeping with this, a single square lattice of silicon nanowires is also able to produce different colors spanning the entire visible range. It is also shown that the 2D gratings also have a third grating direction when rotated 45 degrees. These simple and elegant solutions to color generation from silicon are used to demonstrate a cost-effective refractive index sensor. The sensor works by measuring color changes resulting from changes in the refractive index of the medium surrounding the nanowires using a trichromatic RGB decomposition. Moreover, the sensor produces linear responses in the trichromatic decomposition values versus the surrounding medium index. An index resolution of 10(-4) is achieved by performing basic image processing on the collected images, without the need for a laser or a spectrometer. Spectral analysis enables an increase in the index resolution of the sensor to a value of 10(-6) , with a sensitivity of 400 nm/RIU.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...