Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 692: 115557, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718955

RESUMO

Cytochrome c (cyt c) has been found to play a function in apoptosis in cell-free models. This work presents the creation of molecularly imprinted conducting poly(3, 4-ethylenedioxythiopene) (MIPEDOT) on the surface of a screen printed carbon electrode (SPCE) for cyt c. Cyt c was imprinted by electropolymerization due to the presence of an EDOT monomer hydrophobic functional group on SPCE, using CV to obtain highly selective materials with excellent molecular recognition ability. MIPEDOT was characterized by CV, EIS, and DPV using ferricyanide/ferrocyanide as a redox probe. Further, the characterization of the sensor was accomplished using SEM for surface morphological confirmation. Using CV, the peak current measured at the potential of +1 to -1 V (vs. Ag/AgCl) is linear in the cyt c concentration range from 1 to 1200 pM, showing a remarkably low detection limit of 0.5 pM (sensitivity:0.080 µA pM). Moreover, the applicability of the approach was successfully confirmed with the detection of cyt c in biological samples (human plasma). Similarly, our research has proven a low-cost, simple, and efficient sensing platform for cyt c detection, rendering it a viable tool for the future improvement of reliable and exact non-encroaching cell death detection.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Carbono , Citocromos c , Técnicas Eletroquímicas , Eletrodos , Polímeros , Citocromos c/análise , Citocromos c/química , Polímeros/química , Carbono/química , Técnicas Eletroquímicas/métodos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros Molecularmente Impressos/química , Humanos , Limite de Detecção , Impressão Molecular , Técnicas Biossensoriais/métodos
2.
J Mol Graph Model ; 128: 108715, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38306790

RESUMO

Parkinson's disease (PD) is the most prevalent type of incurable movement disorder. Recent research findings propose that the familial PD-associated molecule DJ-1 exists in cerebrospinal fluid (CSF) and that its levels may be altered as Parkinson's disease advances. By using a molecularly imprinted polymer (MIP) as an artificial receptor, it becomes possible to create a functional MIP with predetermined selectivity for various templates, particularly for the DJ-1 biomarker associated with Parkinson's disease. It mostly depends on molecular recognition via interactions between functional monomers and template molecules. So, the computational methods for the appropriate choice of functional monomers for creating molecular imprinting electropolymers (MIEPs) with particular recognition for the detection of DJ-1, a pivotal biomarker involved in PD, are undertaken in this study. Here, molecular docking, molecular dynamics simulations (MD), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods, and quantum mechanical calculation have been applied to investigate the intermolecular interaction between DJ-1 and several functional electropentamers, viz., polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(o-aminophenol) (POAP), and polythiophene (PTS). In this context, the electropentamers were selected to mimic the imprinted electropolymer system. We analyzed the most stable configurations of the formed complexes involving DJ-1 and electropentamers as a model system for MIEPs. Among these, PEDOT exhibited a more uniform arrangement around DJ-1, engaging in numerous van der Waals, H-bond, electrostatic, and hydrophobic interactions. Hence, it can be regarded as a preferable choice for synthesizing a MIP for DJ-1 recognition. Thus, it will aid in selecting a suitable functional monomer, which is of greater significance in the design and development of selective DJ-1/MIP sensors.


Assuntos
Impressão Molecular , Doença de Parkinson , Humanos , Polímeros/química , Simulação de Acoplamento Molecular , Impressão Molecular/métodos , Pirróis , Simulação de Dinâmica Molecular , Biomarcadores
3.
J Mol Graph Model ; 124: 108552, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379759

RESUMO

Noradrenaline (NA), one of the important excitatory catecholamine neurotransmitters, is used as a medication for Parkinson's Disease (PD). The ß-cyclodextrin (ß-CD) is one of the most effective drug carrier & also used in chiral separation. So, in this theoretical investigation, the R/S-Noradrenaline (R/S-NA) forms binding & chiral recognition mechanisms and energies with ß-CD were explored. Using the AutoDock, R/S forms were first docked into the cavity of ß-CD giving host-guest complexes with the free energy of binding for S-NA (-4.81 kcal/mol) larger than R-NA (-4.53 kcal/mol). The host-guest inclusion 1:1 complexes between R/S-NA and ß-CD have been also modeled and optimized with ONIOM2 (B3LYP/6-31g++DP: PM6) method by using the Gaussian software. Further, frequency calculations were carried out to obtain the free energies. In comparison to the R-NA (-54.59 kcal/mol), it was observed that the S-NA (-56.48 kcal/mol) with ß-CD is more stable. Furthermore, the H-bond results from molecular dynamics simulation revealed that S-NA/ß-CD was more stable than R-NA/ß-CD. In addition, the thermodynamic properties, vibrational analysis (IR), HOMO-LUMO band gap energy, inter molecular hydrogen bond interactions, and conformational analysis were investigated for both the R/S forms to support & compare the stability of the inclusion complex. These inclusion & high stability of S-NA/ß-CD and in turn its theoretical chiral recognition behavior observed agreeing well with the reported NMR experimental data have implications in drug delivery and chiral separation research.


Assuntos
Simulação de Dinâmica Molecular , Norepinefrina/química , beta-Ciclodextrinas/química , Conformação Molecular , Modelos Moleculares , Ligação de Hidrogênio , Termodinâmica , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...