Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 11(5): 206, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33927994

RESUMO

Matrix metalloproteinases (MMPs) are the major proteolytic enzymes which assist in regulating the metastatic process by degrading the extracellular matrix proteins. In this study, we have investigated the anti-metastatic potential of major bioactive compounds in the medicinal plant Indigofera aspalathoides targeting matrix metalloproteinases (MMP2 & MMP9) and it's in silico pharmacokinetic profiles using computational studies. Indigofera aspalathoides (Sivanar vembu in Tamil) is a renowned medicinal herb in traditional Indian medicine which contains indigocarpan, mucronulatol, indigocarpan diacetate, erythroxydiol X and erythroxydiol Y as the major constituents. The 3-dimensional structure of MMP2 and MMP9 was designed by using I-tasser and Modeller and it was validated by PROCHECK. The structures of mucronulatol and indigocarpan have been retrieved from PubChem and indigocarpan diacetate, erythroxydiol X & Y were drawn by using Chemdraw Ultra 6.0. Batimastat was used as a positive control. Molecular docking was performed by using AutoDock 4.2 tools and AutoDock vina, an open-source program which signifies an effective interaction between the phytoligands and MMP2 & MMP9. From the results, AutoDock 4.2 have showed that indigocarpan possesses strong binding energy (ΔG) of - 7.68 kcal/mol towards MMP2 and - 6.35 kcal/mol towards MMP9, whereas batimastat showed binding energy (ΔG) of - 6.34 kcal/mol for MMP2 and - 5.66 kcal/mol for MMP9, meanwhile the results from AutoDock vina indicates that indigocarpan possesses strong binding energy (ΔG) of - 8.0 kcal/mol towards MMP2 and - 8.2 kcal/mol towards MMP9, whereas batimastat showed binding energy (ΔG) of - 7.2 kcal/mol for MMP2 and - 7.6 kcal/mol for MMP9. Also, the ADME and toxicity results suggest that the indigocarpan compound possesses a druggable pharmacokinetic potentiality and does not have carcinogenicity and Ames mutagenesis compared with other phytoligands. Hence, it is evident from our results that both AutoDock platforms strongly revealed that the phytoligand, indigocarpan possesses strong inhibitory activity against MMP2 and MMP9 to control cancer metastasis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02731-w.

2.
Metab Brain Dis ; 36(4): 653-667, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33496919

RESUMO

Epilepsy disease is characterized by the neuronal dysfunction or abnormal neuronal activity of the brain which is regulated by astrocytes. These are glial cells and found to be the major regulators of the brain which are guided by the occurrence of adenosine kinase (ADK) enzyme in the central nervous system (CNS). During the normal physiological environment, ADK maintains the level of adenosine in the CNS. Dysfunction of ADK levels results in accumulation of adenosine levels in the CNS that leads to the pathophysiology of the brain such as astrogliosis which is a pathological hallmark of epileptic seizures. Vicine, an alkaloid glycoside in bitter gourd juice (Momordica charantia) is found to be toxic to the human system if the bitter gourd juice is consumed more. This compound inhibits ADK enzyme activity to lead epilepsy and seizure. Here, the toxic effect of vicine targeting ADK using computational predictions was investigated. The 3-dimensional structure of ADK has been constructed using I-Tasser, which has been refined by ModRefiner, GalaxyRefine, and 3D refine and it was endorsed using PROCHECK, ERRAT, and VADAR. 3D structure of the ligand molecule has been obtained from PubChem. Molecular docking has been achieved using AutoDock 4.2 software, from which the outcome showed the effective interaction between vicine and ADK, which attains binding free energy (∆G) of - 4.13 kcal/mol. Vicine molecule interacts with the active region ARG 149 of ADK and inhibits the functions of ADK that may cause imbalance in energy homeostasis. Also, pre-ADMET results robustly propose in which vicine possesses toxicity, and meanwhile, from the Ames test, it was shown as mutagenic. Hence, the results from our study suggest that vicine was shown to be toxic that suppresses the ADK activity to undergo pathological conditions in the neuronal junctions to lead epilepsy.


Assuntos
Adenosina Quinase/toxicidade , Alcaloides/toxicidade , Desenvolvimento de Medicamentos/métodos , Glucosídeos/toxicidade , Glicosídeos/toxicidade , Doenças do Sistema Nervoso/induzido quimicamente , Pirimidinonas/toxicidade , Adenosina Quinase/química , Alcaloides/química , Animais , Glucosídeos/química , Glicosídeos/química , Humanos , Camundongos , Simulação de Acoplamento Molecular/métodos , Momordica charantia , Estrutura Secundária de Proteína , Pirimidinonas/química , Ratos , Toxinas Biológicas/química , Toxinas Biológicas/toxicidade
3.
Anticancer Agents Med Chem ; 18(9): 1313-1322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29424320

RESUMO

BACKGROUND: Reserpine, an indole alkaloid commonly used for hypertension, is found in the roots of Rauwolfia serpentina. Although the root extract has been used for the treatment of cancer, the molecular mechanism of its anti-cancer activity on hormonal independent prostate cancer remains elusive. METHODS: we evaluated the cytotoxicity of reserpine and other indole alkaloids, yohimbine and ajmaline on Prostate Cancer cells (PC3) using MTT assay. We investigated the mechanism of apoptosis using a combination of techniques including acridine orange/ethidium bromide staining, high content imaging of Annexin V-FITC staining, flow cytometric quantification of the mitochondrial membrane potential and Reactive Oxygen Species (ROS) and cell cycle analysis. RESULTS: Our results indicate that reserpine inhibits DNA synthesis by arresting the cells at the G2 phase and showed all standard sequential features of apoptosis including, destabilization of mitochondrial membrane potential, reduced production of reactive oxygen species and DNA ladder formation. Our in silico analysis further confirmed that indeed reserpine docks to the catalytic cleft of anti-apoptotic proteins substantiating our results. CONCLUSION: Collectively, our findings suggest that reserpine can be a novel therapeutic agent for the treatment of androgen-independent prostate cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Reserpina/farmacologia , Antineoplásicos Fitogênicos/química , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/metabolismo , Rauwolfia/química , Reserpina/química
4.
Bioinformation ; 11(2): 73-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848167

RESUMO

Angiogenesis is the formation of new blood vessels from preexisting vascular network that plays an important role in the tumor growth, invasion and metastasis. Anti-angiogenesis targeting tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2) and platelet derived growth factor receptor ß (PDGFRß) constitutes a successful target for the treatment of cancer. In this work, molecular docking studies of three bioflavanoid such as indigocarpan, mucronulatol, indigocarpan diacetate and two diterpenes namely erythroxydiol X and Y derived from Indigofera aspalathoides as PDGFRß and VEGFR2 inhibitors were performed using computational tools. The crystal structures of two target proteins were retrieved from PDB website. Among the five compounds investigated, indigocarpan exhibited potent binding energy ΔG = -7.04 kcal/mol with VEGFR2 and ΔG = -4.82 with PDGFRß compared to commercially available anti-angiogenic drug sorafenib (positive control). Our results strongly suggested that indigocarpan is a potent angiogenesis inhibitor as ascertained by its potential interaction with VEGFR2 and PDGFRß. This hypothesis provides a better insight to control metastasis by blocking angiogenesis.

5.
Springerplus ; 3: 92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600546

RESUMO

Microbial cellulases are the enzymes widely studied due to their enormous applications in biochemical industry. Among 12 fungal isolates isolated from mangrove plant debris and soil sample collected from Valanthakad Mangroves, Kerala, India, 3 of them were found to exhibit cellulolytic activity. Among them, the most potent isolate which exhibited maximum cellulolytic activity was identified as Trichoderma viride VKF3 [Gene bank accession number- JX683684.1] based on colony morphology, microscopic observation and molecular centeracterization using D1/D2 region amplification. The isolate T. viride VKF3 was found to be non-phytopathogenic against the selected plants. Neighbour joining tree depicted its least divergence rate from the root taxon HM466686.1. T. viride VKF3 was grown under dynamic carbon, nitrogen sources, pH and temperature of the medium to draw out the optimum conditions for cellulase production. Protein stability kinetics and biomass production was also studied upto 11(th) day of incubation. It was evident from the study, that dextrose and beef extract could be used as major carbon and nitrogen sources in submerged fermentation at pH 9.0 and incubation temperature of 25°C to get maximum CMCase yield. Optimum enzyme recovery period was identified between 5(th) to 9(th) days of incubation beyond which the enzyme activity was reduced. By comparing two fermentation methods, submerged fermentation was found to be the best for maximum enzyme production. But utilization of substrates like sugarcane bagasse and cassava starch waste in the SSF offers a better scope in biodegradation of solid waste contributing to solid waste management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...