Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068212

RESUMO

We report a milestone in achieving large-scale, ultrathin (~5 nm) superconducting NbN thin films on 300 mm Si wafers using a high-volume manufacturing (HVM) industrial physical vapor deposition (PVD) system. The NbN thin films possess remarkable structural uniformity and consistently high superconducting quality across the entire 300 mm Si wafer, by incorporating an AlN buffer layer. High-resolution X-ray diffraction and transmission electron microscopy analyses unveiled enhanced crystallinity of (111)-oriented δ-phase NbN with the AlN buffer layer. Notably, NbN films deposited on AlN-buffered Si substrates exhibited a significantly elevated superconducting critical temperature (~2 K higher for the 10 nm NbN) and a higher upper critical magnetic field or Hc2 (34.06 T boost in Hc2 for the 50 nm NbN) in comparison with those without AlN. These findings present a promising pathway for the integration of quantum-grade superconducting NbN films with the existing 300 mm CMOS Si platform for quantum information applications.

2.
Adv Sci (Weinh) ; 9(29): e2202671, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36026570

RESUMO

Mixtures of Ce-doped rare-earth aluminum perovskites are drawing a significant amount of attention as potential scintillating devices. However, the synthesis of complex perovskite systems leads to many challenges. Designing the A-site cations with an equiatomic ratio allows for the stabilization of a single-crystal phase driven by an entropic regime. This work describes the synthesis of a highly epitaxial thin film of configurationally disordered rare-earth aluminum perovskite oxide (La0.2 Lu0.2 Y0.2 Gd0.2 Ce0.2 )AlO3 and characterizes the structural and optical properties. The thin films exhibit three equivalent epitaxial domains having an orthorhombic structure resulting from monoclinic distortion of the perovskite cubic cell. An excitation of 286.5 nm from Gd3+ and energy transfer to Ce3+ with 405 nm emission are observed, which represents the potential for high-energy conversion. These experimental results also offer the pathway to tunable optical properties of high-entropy rare-earth epitaxial perovskite films for a range of applications.

3.
Nanomaterials (Basel) ; 12(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269323

RESUMO

Perovskite offers a framework that boasts various functionalities and physical properties of interest such as ferroelectricity, magnetic orderings, multiferroicity, superconductivity, semiconductor, and optoelectronic properties owing to their rich compositional diversity. These properties are also uniquely tied to their crystal distortion which is directly affected by lattice strain. Therefore, many important properties of perovskite can be further tuned through strain engineering which can be accomplished by chemical doping or simply element substitution, interface engineering in epitaxial thin films, and special architectures such as nanocomposites. In this review, we focus on and highlight the structure-property relationships of perovskite metal oxide films and elucidate the principles to manipulate the functionalities through different modalities of strain engineering approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...