Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Imaging ; 8(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36005454

RESUMO

Breast cancer is the leading cause of cancer death among women worldwide. Screening mammography is considered the primary imaging modality for the early detection of breast cancer. The radiation dose from mammography increases the patients' risk of radiation-induced cancer. The mean glandular dose (MGD), or the average glandular dose (AGD), provides an estimate of the absorbed dose of radiation by the glandular tissues of a breast. In this paper, MGD is estimated for the craniocaudal (CC) and mediolateral-oblique (MLO) views using entrance skin dose (ESD), X-ray spectrum information, patient age, breast glandularity, and breast thickness. Moreover, a regression analysis is performed to evaluate the impact of mammography acquisition parameters, age, and breast thickness on the estimated MGD and other machine-produced dose quantities, namely, ESD and organ dose (OD). Furthermore, a correlation study is conducted to evaluate the correlation between the ESD and OD, and the estimated MGD per image view. This retrospective study was applied to a dataset of 2035 mammograms corresponding to a cohort of 486 subjects with an age range of 28-86 years who underwent screening mammography examinations. Linear regression metrics were calculated to evaluate the strength of the correlations. The mean (and range) MGD for the CC view was 0.832 (0.110-3.491) mGy and for the MLO view was 0.995 (0.256-2.949) mGy. All the mammography dose quantities strongly correlated with tube exposure (mAs): ESD (R2 = 0.938 for the CC view and R2 = 0.945 for the MLO view), OD (R2 = 0.969 for the CC view and R2 = 0.983 for the MLO view), and MGD (R2 = 0.980 for the CC view and R2 = 0.972 for the MLO view). Breast thickness showed a better correlation with all the mammography dose quantities than patient age, which showed a poor correlation. Moreover, a strong correlation was found between the calculated MGD and both the ESD (R2 = 0.929 for the CC view and R2 = 0.914 for the MLO view) and OD (R2 = 0.971 for the CC view and R2 = 0.972 for the MLO view). Furthermore, it was found that the MLO scan views yield a slightly higher dose compared to CC scan views. It was also found that the glandular absorbed dose is more dependent on glandularity than size. Despite being more reflective of the dose absorbed by the glandular tissue than OD and ESD, MGD is considered labor-intensive and time-consuming to estimate.

2.
Sensors (Basel) ; 22(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890881

RESUMO

Visually impaired people face many challenges that limit their ability to perform daily tasks and interact with the surrounding world. Navigating around places is one of the biggest challenges that face visually impaired people, especially those with complete loss of vision. As the Internet of Things (IoT) concept starts to play a major role in smart cities applications, visually impaired people can be one of the benefitted clients. In this paper, we propose a smart IoT-based mobile sensors unit that can be attached to an off-the-shelf cane, hereafter a smart cane, to facilitate independent movement for visually impaired people. The proposed mobile sensors unit consists of a six-axis accelerometer/gyro, ultrasonic sensors, GPS sensor, cameras, a digital motion processor and a single credit-card-sized single-board microcomputer. The unit is used to collect information about the cane user and the surrounding obstacles while on the move. An embedded machine learning algorithm is developed and stored in the microcomputer memory to identify the detected obstacles and alarm the user about their nature. In addition, in case of emergencies such as a cane fall, the unit alerts the cane user and their guardian. Moreover, a mobile application is developed to be used by the guardian to track the cane user via Google Maps using a mobile handset to ensure safety. To validate the system, a prototype was developed and tested.


Assuntos
Internet das Coisas , Auxiliares Sensoriais , Pessoas com Deficiência Visual , Bengala , Humanos , Aprendizado de Máquina
3.
J Imaging ; 8(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621887

RESUMO

Breast cancer is the most commonly diagnosed cancer type and is the leading cause of cancer-related death among females worldwide. Breast screening and early detection are currently the most successful approaches for the management and treatment of this disease. Several imaging modalities are currently utilized for detecting breast cancer, of which microwave imaging (MWI) is gaining quite a lot of attention as a promising diagnostic tool for early breast cancer detection. MWI is a noninvasive, relatively inexpensive, fast, convenient, and safe screening tool. The purpose of this paper is to provide an up-to-date survey of the principles, developments, and current research status of MWI for breast cancer detection. This paper is structured into two sections; the first is an overview of current MWI techniques used for detecting breast cancer, followed by an explanation of the working principle behind MWI and its various types, namely, microwave tomography and radar-based imaging. In the second section, a review of the initial experiments along with more recent studies on the use of MWI for breast cancer detection is presented. Furthermore, the paper summarizes the challenges facing MWI as a breast cancer detection tool and provides future research directions. On the whole, MWI has proven its potential as a screening tool for breast cancer detection, both as a standalone or complementary technique. However, there are a few challenges that need to be addressed to unlock the full potential of this imaging modality and translate it to clinical settings.

4.
J Imaging ; 8(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200720

RESUMO

A method for generating fluoroscopic (time-varying) volumetric images using patient-specific motion models derived from four-dimensional cone-beam CT (4D-CBCT) images was developed. 4D-CBCT images acquired immediately prior to treatment have the potential to accurately represent patient anatomy and respiration during treatment. Fluoroscopic 3D image estimation is performed in two steps: (1) deriving motion models and (2) optimization. To derive motion models, every phase in a 4D-CBCT set is registered to a reference phase chosen from the same set using deformable image registration (DIR). Principal components analysis (PCA) is used to reduce the dimensionality of the displacement vector fields (DVFs) resulting from DIR into a few vectors representing organ motion found in the DVFs. The PCA motion models are optimized iteratively by comparing a cone-beam CT (CBCT) projection to a simulated projection computed from both the motion model and a reference 4D-CBCT phase, resulting in a sequence of fluoroscopic 3D images. Patient datasets were used to evaluate the method by estimating the tumor location in the generated images compared to manually defined ground truth positions. Experimental results showed that the average tumor mean absolute error (MAE) along the superior-inferior (SI) direction and the 95th percentile in two patient datasets were 2.29 and 5.79 mm for patient 1, and 1.89 and 4.82 mm for patient 2. This study demonstrated the feasibility of deriving 4D-CBCT-based PCA motion models that have the potential to account for the 3D non-rigid patient motion and localize tumors and other patient anatomical structures on the day of treatment.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159738

RESUMO

The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.

6.
Biomed Phys Eng Express ; 7(2)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33588398

RESUMO

Purpose: Estimate organs doses (ODs) of patients subjected to unenhanced (S1) and enhanced (S2) chest CT studies relying on image parameters such as Hounsfield Units (HUs).Materials and Methods: CT scans and images of a total of 16 patients who underwent two series of chest CT studies were obtained and retrospectively examined. OD increments of liver and pancreas for both series (S1 & S2) were estimated using two different independent methods, namely simulation approach using CT-EXPO and Amato's phantom-based fitting model (APFM). HUs were quantified for each organ by manually drawing fixed area-sized regions of interest (ROIs). The mean HUs were collected to obtain the ODs increments following APFM. Regression analysis was applied to find and assess the relationship between the HUs and the OD increments estimated using APFM and that using CT-EXPO. Spearman Coefficient and Wilcoxon Matched Pairedt-testwere conducted to show statistical correlation and difference between ODs increments using the two methods.Results:A strong significant difference was depicted between S1 and S2 scan series of liver and pancreas using CT-EXPO simulation. Mean HU values for S1 were lower than S2, resulting in statistically significant (p < 0.0001) HU changes. CT-EXPO simulation yielded significantly higher difference in ODs compared to the APFM for liver (p = 0.0455) and pancreas (p = 0.0031). Regression analysis revealed a strong relationship between HU of S1 and S2 and ODs increments using APFM in both organs (R2 = 0.99), dissimilar to CT-EXPO (R2 = 0.39 in liver andR2 = 0.05 in pancreas).Conclusions: Although CT-EXPO allows for estimating ODs accounting for major acquisition scan parameters, it is not a reliable tool to evaluate the impact of contrast enhancement on ODs. On the other hand, the APFM accounts for contrast enhancement accumulation yet only provides relative OD increments, an information of limited clinical use.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Simulação por Computador , Humanos , Estudos Retrospectivos
7.
IEEE Rev Biomed Eng ; 14: 307-326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32746363

RESUMO

Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.


Assuntos
Medições Luminescentes , Imagem Molecular , Neoplasias/diagnóstico por imagem , Imagem Óptica , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Imagens de Fantasmas
8.
Biomed Phys Eng Express ; 6(3): 035020, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33438665

RESUMO

The aim of this paper is to quantify the day-to-day variations of motion models derived from pre-treatment 4-dimensional cone beam CT (4DCBCT) fractions for lung cancer stereotactic body radiotherapy (SBRT) patients. Motion models are built by (1) applying deformable image registration (DIR) on each 4DCBCT image with respect to a reference image from that day, resulting in a set of displacement vector fields (DVFs), and (2) applying principal component analysis (PCA) on the DVFs to obtain principal components representing a motion model. Variations were quantified by comparing the PCA eigenvectors of the motion model built from the first day of treatment to the corresponding eigenvectors of the other motion models built from each successive day of treatment. Three metrics were used to quantify the variations: root mean squared (RMS) difference in the vectors, directional similarity, and an introduced metric called the Euclidean Model Norm (EMN). EMN quantifies the degree to which a motion model derived from the first fraction can represent the motion models of subsequent fractions. Twenty-one 4DCBCT scans from five SBRT patient treatments were used in this retrospective study. Experimental results demonstrated that the first two eigenvectors of motion models across all fractions have smaller RMS (0.00017), larger directional similarity (0.528), and larger EMN (0.678) than the last three eigenvectors (RMS: 0.00025, directional similarity: 0.041, and EMN: 0.212). The study concluded that, while the motion model eigenvectors varied from fraction to fraction, the first few eigenvectors were shown to be more stable across treatment fractions than others. This supports the notion that a pre-treatment motion model built from the first few PCA eigenvectors may remain valid throughout a treatment course. Future work is necessary to quantify how day-to-day variations in these models will affect motion reconstruction accuracy for specific clinical tasks.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Algoritmos , Simulação por Computador , Humanos , Movimento (Física) , Análise de Componente Principal , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Respiração , Estudos Retrospectivos
9.
Med Phys ; 46(8): 3627-3639, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31087359

RESUMO

PURPOSE: To develop and evaluate a method of reconstructing a patient- and treatment day- specific volumetric image and motion model from free-breathing cone-beam projections and respiratory surrogate measurements. This Motion-Compensated Simultaneous Algebraic Reconstruction Technique (MC-SART) generates and uses a motion model derived directly from the cone-beam projections, without requiring prior motion measurements from 4DCT, and can compensate for both inter- and intrabin deformations. The motion model can be used to generate images at arbitrary breathing points, which can be used for estimating volumetric images during treatment delivery. METHODS: The MC-SART was formulated using simultaneous image reconstruction and motion model estimation. For image reconstruction, projections were first binned according to external surrogate measurements. Projections in each bin were used to reconstruct a set of volumetric images using MC-SART. The motion model was estimated based on deformable image registration between the reconstructed bins, and least squares fitting to model parameters. The model was used to compensate for motion in both projection and backprojection operations in the subsequent image reconstruction iterations. These updated images were then used to update the motion model, and the two steps were alternated between. The final output is a volumetric reference image and a motion model that can be used to generate images at any other time point from surrogate measurements. RESULTS: A retrospective patient dataset consisting of eight lung cancer patients was used to evaluate the method. The absolute intensity differences in the lung regions compared to ground truth were 50.8 ± 43.9 HU in peak exhale phases (reference) and 80.8 ± 74.0 in peak inhale phases (generated). The 50th percentile of voxel registration error of all voxels in the lung regions with >5 mm amplitude was 1.3 mm. The MC-SART was also applied to measured patient cone-beam projections acquired with a linac-mounted CBCT system. Results from this patient data demonstrate the feasibility of MC-SART and showed qualitative image quality improvements compared to other state-of-the-art algorithms. CONCLUSION: We have developed a simultaneous image reconstruction and motion model estimation method that uses Cone-beam computed tomography (CBCT) projections and respiratory surrogate measurements to reconstruct a high-quality reference image and motion model of a patient in treatment position. The method provided superior performance in both HU accuracy and positional accuracy compared to other existing methods. The resultant reference image and motion model can be combined with respiratory surrogate measurements to generate volumetric images representing patient anatomy at arbitrary time points.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador/métodos , Movimento , Respiração , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Neoplasias Pulmonares/radioterapia , Estudos Retrospectivos
10.
Phys Med Biol ; 61(2): 554-68, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26683530

RESUMO

The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying ('fluoroscopic') 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying 'fluoroscopic' 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Movimento (Física) , Imagens de Fantasmas
11.
Med Phys ; 42(6): 2897-907, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26127043

RESUMO

PURPOSE: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). METHODS: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying "fluoroscopic" 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using "ground truth" XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. RESULTS: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. CONCLUSIONS: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern.


Assuntos
Tomografia Computadorizada Quadridimensional , Movimento , Modelagem Computacional Específica para o Paciente , Doses de Radiação , Radiocirurgia , Respiração , Algoritmos , Estudos de Viabilidade , Fluoroscopia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
12.
Phys Med Biol ; 60(2): 521-35, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25548999

RESUMO

Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.


Assuntos
Fluoroscopia/métodos , Tomografia Computadorizada Quadridimensional/métodos , Imageamento Tridimensional/métodos , Respiração , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Imagens de Fantasmas
13.
IEEE Trans Biomed Eng ; 60(2): 332-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23193225

RESUMO

Accounting for respiration motion during imaging can help improve targeting precision in radiation therapy. We propose local intensity feature tracking (LIFT), a novel markerless breath phase sorting method in cone beam computed tomography (CBCT) scan images. The contributions of this study are twofold. First, LIFT extracts the respiratory signal from the CBCT projections of the thorax depending only on tissue feature points that exhibit respiration. Second, the extracted respiratory signal is shown to correlate with standard respiration signals. LIFT extracts feature points in the first CBCT projection of a sequence and tracks those points in consecutive projections forming trajectories. Clustering is applied to select trajectories showing an oscillating behavior similar to the breath motion. Those "breathing" trajectories are used in a 3-D reconstruction approach to recover the 3-D motion of the lung which represents the respiratory signal. Experiments were conducted on datasets exhibiting regular and irregular breathing patterns. Results showed that LIFT-based respiratory signal correlates with the diaphragm position-based signal with an average phase shift of 1.68 projections as well as with the internal marker-based signal with an average phase shift of 1.78 projections. LIFT was able to detect the respiratory signal in all projections of all datasets.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento/fisiologia , Mecânica Respiratória , Processamento de Sinais Assistido por Computador , Algoritmos , Análise por Conglomerados , Bases de Dados Factuais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...