Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35629838

RESUMO

Numerous studies have shown that bovine hemoglobin, a protein from slaughterhouse waste, has important biological potential after conventional enzymatic hydrolysis. However, the active peptides could not be considered pure since they contained mineral salts. Therefore, an optimized multi-step process of electrodialysis with bipolar membranes (EDBM) was carried out to produce discolored and demineralized peptides without the addition of chemical agents. The aim of this study was to test the antibacterial, antifungal and antioxidant activities of discolored and demineralized bovine hemoglobin hydrolysates recovered by EDBM and to compare them with raw and discolored hydrolysates derived from conventional hydrolysis. The results demonstrate that discolored-demineralized hydrolysates recovered from EDBM had significant antimicrobial activity against many bacterial (gram-positive and gram-negative) and fungal (molds and yeast) strains. Concerning antibacterial activity, lower MIC values for hydrolysates were registered against Staphylococcus aureus, Kocuria rhizophila and Listeria monocytogenes. For antifungal activity, lower MIC values for hydrolysates were registered against Paecilomyces spp., Rhodotorula mucilaginosa and Mucor racemosus. Hemoglobin hydrolysates showed fungicidal mechanisms towards these fungal strains since the MFC/MIC ratio was ≤4. The hydrolysates also showed a potent antioxidant effect in four different antioxidant tests. Consequently, they can be considered promising natural, low-salt food preservatives. To the best of our knowledge, no previous studies have identified the biological properties of discolored and demineralized bovine hemoglobin hydrolysates.

2.
Membranes (Basel) ; 11(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498372

RESUMO

Hydrolysis of bovine hemoglobin (bHb), the main constituent of bovine cruor by-product, releases a natural antimicrobial peptide (NKT) which could present a major interest for food safety. To enrich this, tangential ultrafiltration can be implemented, but ultrafiltration conditions are mainly empirically established. In this context, the application of a simulation method for predicting the NKT yield and enrichment was investigated. Ultrafiltration performances were studied for decolored bHb hydrolysates at different degrees of hydrolysis (DH; 3%, 5%, 10% and 18%) and colored hydrolysates (3% and 5% DH) with 1 and 3 kg·mol-1 regenerated cellulose membranes. The simulation method helped to identify the most promising hydrolysate (in terms of NKT enrichment, yield and productivity) as the 3% DH colored hydrolysate, and UF conditions (volumetric reduction factor of 5 and 3 with 1 and 3 kg·mol-1 membrane, respectively) for higher antimicrobial recovery. A maximal enrichment factor of about 29 and NKT purity of 70% in permeate were observed. The results showed that the antimicrobial activity was in relation with the process selectivity and NKT purity. Finally, this reliable method, applied for predicting the ultrafiltration performances to enrich peptides of interest, is part of a global approach to rationally valorize protein resources from various by-products.

3.
Membranes (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003442

RESUMO

Bovine cruor, a slaughterhouse waste, was mainly composed of hemoglobin, a protein rich in antibacterial and antioxidant peptides after its hydrolysis. In the current context of food safety, such bioactive peptides derived from enzymatic hydrolysis of hemoglobin represent potential promising preservatives for the food sector. In this work, the hemoglobin hydrolysis to produce bioactive peptides was performed in a regulated pH medium without the use of chemical solvents and by an eco-efficient process: electrodialysis with bipolar membrane (EDBM). Bipolar/monopolar (anionic or cationic) configuration using the H+ and OH- generated by the bipolar membranes to regulate the pH was investigated. The aim of this study was to present and identify the bioactive peptides produced by EDBM in comparison with conventional hydrolysis and to identify their biological activity. The use of the EDBM for the enzymatic hydrolysis of hemoglobin has allowed for the production and identification of 17 bioactive peptides. Hydrolysates obtained by EDBM showed an excellent antimicrobial activity against six strains, antioxidant activity measured by four different tests and for the first time anti-fungal activities against five yeasts and mold strains. Consequently, this enzymatic hydrolysis carried out in regulated pH medium with bipolar membranes could provide bioactive peptides presenting antibacterial, antifungal and antioxidant interest.

4.
Front Bioeng Biotechnol ; 8: 585815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102467

RESUMO

Production of bioactive peptides (BAPs) by Lactobacillus species is a cost-effective approach compared to the use of purified enzymes. In this study, proteolytic Lactobacillus helveticus strains were used for milk fermentation to produce BAPs capable of inhibiting angiotensin converting enzyme (ACE). Fermented milks were produced in bioreactors using batch mode, and the resulting products showed significant ACE-inhibitory activities. However, the benefits of fermentation in terms of peptide composition and ACE-inhibitory activity were noticeably reduced when the samples (fermented milks and non-fermented controls) were subject to simulated gastrointestinal digestion (GID). Introducing an ultrafiltration step after fermentation allowed to prevent this effect of GID and restored the effect of fermentation. Furthermore, an integrated continuous process for peptide production was developed which led to a 3 fold increased peptide productivity compared to batch production. Using a membrane bioreactor allowed to generate and purify in a single step, an active ingredient for ACE inhibition.

5.
Membranes (Basel) ; 10(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992811

RESUMO

Neokyotorphin (α137-141) is recognized as an antimicrobial peptide and a natural meat preservative. It is produced by conventional enzymatic hydrolysis of bovine hemoglobin, a major component of cruor, a by-product of slaughterhouses. However, during conventional hydrolysis, chemical agents are necessary to adjust and regulate the pH of the protein solution and the mineral salt content of the final hydrolysate is consequently high. To produce this peptide of interest without chemical agents and with a low salt concentration, electrodialysis with bipolar membrane (EDBM), an electromembrane process recognized as a green process, with two different membrane configurations (cationic (MCP) and anionic (AEM) membranes) was investigated. Hydrolysis in EDBM showed the same enzymatic mechanism, "Zipper", and allowed the generation of α137-141 in the same concentration as observed in conventional hydrolysis (control). EDBM-MCP allowed the production of hydrolysates containing a low concentration of mineral salts but with fouling formation on MCP, while EDBM-AEM allowed the production of hydrolysates without fouling but with a similar salt concentration than the control. To the best of our knowledge, this was the first time that EDBM was demonstrated as a feasible and innovative technology to produce peptide hydrolysates from enzymatic hydrolysis.

6.
Microorganisms ; 8(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392736

RESUMO

Biofilm bioreactors are promising systems for continuous biosurfactant production since they provide process stability through cell immobilization and avoid foam formation. In this work, a two-compartment biofilm bioreactor was designed consisting of a stirred tank reactor and a trickle-bed reactor containing a structured metal packing for biofilm formation. A strong and poor biofilm forming B. subtilis 168 strain due to restored exopolysaccharides (EPS) production or not were cultivated in the system to study the growth behavior of the planktonic and biofilm population for the establishment of a growth model. A high dilution rate was used in order to promote biofilm formation on the packing and wash out unwanted planktonic cells. Biofilm development kinetics on the packing were assessed through a total organic carbon mass balance. The EPS+ strain showed a significantly improved performance in terms of adhesion capacity and surfactin production. The mean surfactin productivity of the EPS+ strain was about 37% higher during the continuous cultivation compared to the EPS- strain. The substrate consumption together with the planktonic cell and biofilm development were properly predicted by the model (α = 0.05). The results show the efficiency of the biofilm bioreactor for continuous surfactin production using an EPS producing strain.

7.
Membranes (Basel) ; 10(5)2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32375279

RESUMO

The fractionation of bioactive peptides from hydrolysate is a main challenge to produce efficient alternative for synthetic additives. In this work, electrodialysis with ultrafiltration membrane (EDUF) was proposed to increase the purity of one antimicrobial peptide from slaughterhouse by-product hydrolysate. This targeted-peptide, α137-141 (653 Da, TSKYR), inhibits a large spectrum of microbial growths and delays meat rancidity; therefore, if concentrated, it could be used as food antimicrobial. In this context, three pH values were investigated during EDUF treatment to increase the α137-141 purity: 4.7, 6.5, and 9. pH 9 showed the highest purity increase-75-fold compared to the initial hydrolysate. Although the whole hydrolysate contains more than 100 peptides, only six peptides were recovered at a significant concentration. In this fraction, the α137-141 peptide represented more than 50% of the recovered total peptide concentration. The EDUF α137-141-enriched fraction obtained in this optimized condition would be a promising natural preservative to substitute synthetic additives used to protect food.

8.
Food Res Int ; 133: 109201, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466902

RESUMO

The aim of this study was to investigate the probiotic properties of 174 Lactobacillus strains isolated from Mongolian dairy products, and particularly their impact on intestinal calcium uptake and absorption. All isolates underwent a first screening based on cell surface hydrophobicity, acid tolerance, tolerance to gastro-intestinal digestion, autoaggregation, adhesion and cytotoxicity against intestinal cells. Six Lactobacillus strains from different species (L. casei, L. kefiranofaciens, L. plantarum, L. fermentum, L. helveticus and L. delbrueckii) were selected, and their impact on intestinal calcium uptake and transport was investigated using Caco-2. Five strains were able to improve total calcium transport after 24 h contact with a differentiated Caco-2 cell monolayer. Concomitantly the L. plantarum strain was able to increase cellular calcium uptake in Caco-2 cells by 10% in comparison to control conditions. To determine which pathway(s) of calcium absorption was modulated by the strains, a qPCR-based study on 4 genes related to calcium/vitamin D metabolism or tight junction integrity was conducted on mucus-secreting intestinal HT-29 MTX cells. The L. plantarum strain modulates the transcellular pathway by regulating the expression of vitamin D receptor (1.79 fold of control) and calcium transporter (4.77 fold of control) while the L. delbrueckii strain acts on the paracellular pathway by modulating claudin-2 expression (2.83 fold of control). This work highlights the impact of Lactobacillus probiotic strains on intestinal calcium absorption and for the first time give some evidence about the cellular pathways involved.


Assuntos
Lactobacillus , Probióticos , Células CACO-2 , Cálcio , Humanos , Mongólia
9.
Food Chem ; 304: 125448, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31491713

RESUMO

Blood, from slaughterhouses, is an inevitable part of meat production, causing environmental problems due to the large volumes recovered and its low valorization. However, the α137-141 peptide, a natural antimicrobial peptide, can be obtained after hydrolysis of hemoglobin, the main constituent of blood red part. To recover it at a sufficient concentration for antimicrobial applications, a new sustainable technology, called electrodialysis with ultrafiltration membrane (EDUF), was investigated. The α137-141 concentration was increased about 4-fold at a feed peptide concentration of 8% with an enrichment factor above 24-fold. This feed peptide concentration also needed the lowest relative energy consumption. Moreover, this peptide fraction protected meat against microbial growth, as well as rancidity, during 14 days under refrigeration. This peptide fraction was validated as a natural preservative and substitute for synthetic additives against food spoilage. Finally, producing antimicrobial/antioxidant peptide from wastes by EDUF fits perfectly with the concept of circular economy.


Assuntos
Anti-Infecciosos/farmacologia , Sangue , Produtos da Carne/análise , Peptídeos/farmacologia , Matadouros , Animais , Antioxidantes/farmacologia , Conservantes de Alimentos , Refrigeração , Ultrafiltração
10.
Food Chem ; 304: 125415, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31479995

RESUMO

The aim of our study was to characterize the proteolytic activity of 170 Lactobacillus strains isolated from traditional Mongolian dairy products (yogurt and fermented milk), and to investigate their capacity to generate bioactive peptides during milk fermentation. All isolates were screened for proteolytic activity using skim milk agar-well diffusion test. Fifteen strains (9 Lactobacillus helveticus and 6 Lactobacillus delbrueckii subsp. bulgaricus) were then selected and further evaluated using an original strategy based on multiparametric analysis, taking into account growth rate, acidification capacity, proteolytic activity, cell envelope associated peptidase (CEP) profile and LC-MS/MS analysis of peptides. All parameters were analyzed using principal component analysis (PCA). Results showed that strain growth and acidification correlate with peptide production and that Mongolian L. helveticus strains differ from Western strains in terms of CEP distribution. The PCA revealed that CEP profiles are major determinants of ß-casein hydrolysis patterns. Strains with distinctive proteolytic activities were identified.


Assuntos
Caseínas/metabolismo , Produtos Fermentados do Leite/análise , Lactobacillus delbrueckii/metabolismo , Lactobacillus helveticus/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/análise , Animais , Cromatografia Líquida , Fermentação , Lactobacillus delbrueckii/enzimologia , Lactobacillus helveticus/enzimologia , Peptídeos/metabolismo , Proteólise , Espectrometria de Massas em Tandem , Iogurte/análise
11.
Bioresour Technol ; 293: 122090, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31499329

RESUMO

Biofilm bioreactors have already been proven to be efficient systems for microbial lipopeptide production since they avoid foam formation. However, the cell adhesion capacities of the laboratory strain B.subtilis 168 to the biofilm bioreactor support are limited. In this work, we present a novel approach for increasing cell adhesion through the generation of filamentous and/or exopolysaccharide producing B.subtilis 168 mutants by genetic engineering. The single cell growth behavior was analyzed using time-lapse microscopy and the colonization capacities were investigated under continuous flow conditions in a drip-flow reactor. Cell adhesion could be increased three times through filamentous growth in lipopeptide producing B. subtilis 168 derivatives strains. Further restored exopolysaccharide production increased up to 50 times the cell adhesion capacities. Enhanced cell immobilization resulted in 10 times increased surfactin production. These findings will be of particular interest regarding the design of more efficient microbial cell factories for biofilm cultivation.


Assuntos
Bacillus subtilis , Lipopeptídeos , Biofilmes , Reatores Biológicos , Peptídeos Cíclicos
12.
Biodegradation ; 30(4): 259-272, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30390188

RESUMO

Pseudomonas strains isolated from oil contaminated soils were screened for biosurfactant production. Three out of eleven Pseudomonas isolates were selected for their high emulsifying activity (E24 value on n-hexadecane ~ 78%). These isolates (E39, E311 and E313) were identified as members of the P. putida group using phenotypical methods and a molecular approach. To identify the chemical nature of produced biosurfactants, thin layer chromatography and MALDI-ToF mass spectrometry analysis were carried out and revealed lipopeptides belonging to the syringafactin family. The activity of the produced biosurfactants was stable over a pH range of 6-12, at high salinity (10%) and after heating at 80 °C. Tests in contaminated sand micro-bioreactors showed that the three strains were able to degrade diesel. These results suggest the potential of these syringafactin producing strains for application in hydrocarbon bioremediation.


Assuntos
Petróleo , Pseudomonas , Biodegradação Ambiental , Hidrocarbonetos , Solo , Tensoativos
13.
Front Microbiol ; 9: 2354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386307

RESUMO

To compensate for their amino acid auxotrophy, lactobacilli have developed the ability to hydrolyze proteins present in their environment. This proteolytic activity not only generates the free amino acids needed by the bacteria, but also a large variety of peptides, some of which are endowed with biological activities. These so-called "bioactive peptides" (BAPs) are interesting from a nutrition and healthcare perspective. The use of lactic acid bacteria (LAB) such as lactobacilli is an effective strategy for production and valorization of new BAPs. The proteolytic activity of lactobacilli is exerted in a strain- and species-dependent manner: each species exhibits different proteinase content, leading to a large variety of proteolytic activities. This underlines the high potential of Lactobacillus strains to produce novel hydrolysates and BAPs of major interest. This review aims at discussing the potential of different Lactobacillus species to release BAPs from fermentation media and processes. Strategies used for peptide production are presented. Additionally, we propose a methodology to select the most promising Lactobacillus strains as sources of BAPs. This methodology combines conventional approaches and in silico analyses.

14.
Artigo em Inglês | MEDLINE | ID: mdl-29692758

RESUMO

A qualitative study is presented, where the main question was whether food-derived hemorphins, i.e., originating from digested alimentary hemoglobin, could pass the intestinal barrier and/or the blood-brain barrier (BBB). Once absorbed, hemorphins are opioid receptor (OR) ligands that may interact with peripheral and central OR and have effects on food intake and energy balance regulation. LLVV-YPWT (LLVV-H4), LVV-H4, VV-H4, VV-YPWTQRF (VV-H7), and VV-H7 hemorphins that were previously identified in the 120 min digest resulting from the simulated gastrointestinal digestion of hemoglobin have been synthesized to be tested in in vitro models of passage of IB and BBB. LC-MS/MS analyses yielded that all hemorphins, except the LLVV-H4 sequence, were able to cross intact the human intestinal epithelium model with Caco-2 cells within 5-60 min when applied at 5 mM. Moreover, all hemorphins crossed intact the human BBB model with brain-like endothelial cells (BLEC) within 30 min when applied at 100 µM. Fragments of these hemorphins were also detected, especially the YPWT common tetrapeptide that retains OR-binding capacity. A cAMP assay performed in Caco-2 cells indicates that tested hemorphins behave as OR agonists in these cells by reducing cAMP production. We further provide preliminary results regarding the effects of hemorphins on tight junction proteins, specifically here the claudin-4 that is involved in paracellular permeability. All hemorphins at 100 µM, except the LLVV-H4 peptide, significantly decreased claudin-4 mRNA levels in the Caco-2 intestinal model. This in vitro study is a first step toward demonstrating food-derived hemorphins bioavailability which is in line with the growing body of evidence supporting physiological functions for food-derived peptides.

15.
Microb Pathog ; 115: 41-49, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29221796

RESUMO

In this work we evaluated the mode of action of six new synthesized peptides (Met-Asp-Asn; Glu-leu-Ala-Ala-Ala-Cys; Leu-Arg-Asp-Asp-Phe; Gly-Asn-Ala-Pro-Gly-Ala-Val-Ala; Ala-Leu-Arg-Met-Ser-Gly and Arg-Asp-Arg-Phe-Leu), previously identified, from the most active peptide fractions of RuBisCO peptic hydrolysate against Listeria innocua via a membrane damage mechanism. Antibacterial effect and the minimum inhibitory concentrations (MIC) of these peptides were evaluated against six strains and their hemolytic activities towards bovine erythrocytes were determined. Prediction of the secondary structure of peptides indicated that these new antibacterial peptides are characterized by a short peptide chains (3-8 amino acid) and a random coli structure. Moreover, it was observed that one key characteristic of antibacterial peptides is the presence of specific amino acids such as cysteine, glycine, arginine and aspartic acid. In addition the determination of the extracellular potassium concentration revealed that treatment with pure RuBisCO peptides could cause morphological changes of L. innocua and destruction of the cell integrity via irreversible membrane damage. The results could provide information for investigating the antibacterial model of antibacterial peptides derived from RuBisCO protein hydrolysates.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Listeria/efeitos dos fármacos , Medicago sativa/química , Peptídeos/farmacologia , Hidrolisados de Proteína/metabolismo , Ribulose-Bifosfato Carboxilase/farmacologia , Sequência de Aminoácidos , Aminoácidos , Animais , Bovinos , Eritrócitos/efeitos dos fármacos , Glucose , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Peptídeos/síntese química , Conformação Proteica
16.
J Colloid Interface Sci ; 508: 488-499, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28865343

RESUMO

Polypeptide/solid charged surface interactions are omnipresent in the biomedical and biochemical fields. The present study aimed to understand the adsorption mechanisms of a cation-exchange membrane (CEM) by a well-characterized peptide mixture at three different pH values. Results demonstrated that fouling was important at pH 6, twice lower at pH 2 and negligible at pH 10. At pH 6, ALPMHIR and TKIPAVFK sequences firstly established electrostatic interactions with the negative CEM charges (SO3-) through their positive K and R residues (NH3+) creating a first nanolayer. Secondly, peptide/peptide interactions occurred through their respective hydrophobic residues creating a second nanolayer. At pH 2, VLVLDTDYK and IDALNENK sequences interacted only electrostatically and that in a lower proportion since at acidic pH values, most of the CEM charges would be protonated and uncharged (HSO3) and then limit the potential electrostatic interactions. In addition, the sequences of peptides interacting at pH 2 and 6 were different. This was explained by their structure in terms of residue nature and position in the sequence. At pH 10, no fouling was observed due to the lack of positive peptide charges. To the best of our knowledge, it is the first in-depth study concerning the fouling of CEMs by peptides from a complex mixture.

17.
Biotechnol J ; 12(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28636078

RESUMO

Lipopeoptides are amphiphilic compounds combining interesting physicochemical properties and biological activities. Due to their high foaming capacity in aerated bioreactor, the development of scalable bioprocesses for their production is a major bottleneck. In addition, the genes involved in the biosynthesis of these lipopeptides are mainly regulated by the quorum sensing, a global regulatory mechanism depending on cell density and known to be activated in biofilms. Several approaches have thus been considered in literature taking into account two criteria, on one side, to favor, control or avoid foam formation and on the other side, to use planktonic or immobilized (biofilm) cells. These different bioprocesses are discussed in the present review along with the purification strategies proposed for extracting and concentrating these biosurfactants.


Assuntos
Bacillus/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Lipopeptídeos/metabolismo , Bacillus/metabolismo , Biofilmes/crescimento & desenvolvimento , Células Imobilizadas/fisiologia , Fermentação , Percepção de Quorum
18.
Artigo em Inglês | MEDLINE | ID: mdl-28484425

RESUMO

The gut plays a central role in energy homeostasis. Food intake regulation strongly relies on the gut-brain axis, and numerous studies have pointed out the significant role played by gut hormones released from enteroendocrine cells. It is well known that digestive products of dietary protein possess a high satiating effect compared to carbohydrates and fat. Nevertheless, the processes occurring in the gut during protein digestion involved in the short-term regulation of food intake are still not totally unraveled. This review provides a concise overview of the current data concerning the implication of food-derived peptides in the peripheral regulation of food intake with a focus on the gut hormones cholecystokinin and glucagon-like peptide 1 regulation and the relationship with some aspects of glucose homeostasis.

19.
Food Res Int ; 92: 113-118, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28290288

RESUMO

Dietary proteins have recently been investigated as a new source of DPP-IV inhibitory peptides with limited side effects and promising applications. Numerous studies have highlighted and identified peptide sequences able to inhibit DPP-IV activity in vitro, mostly from milk proteins. However, the correlation to in vivo studies remains scarce because standard in vitro assays with purified enzyme do not accurately simulate key factors impacting peptide bioactivity such as intestinal and brush border enzymes or cellular permeability. Therefore, a DPP-IV activity inhibition assay is here proposed using non differentiated confluent Caco-2 cells to rapidly assess food-derived peptide inhibitory potential in approaching intestinal conditions. DPP-IV gene expression was first checked and specific DPP-IV substrate was used to implement the assay. Using a specific DPP-IV inhibitor confirmed that non differentiated Caco-2 cells express measurable DPPIV activity. This in situ assay was then applied to digests which already demonstrated a DPP-IV inhibitory potential with a standard assay using purified enzyme. Bovine hemoglobin and cuttlefish hydrolysate digests from simulated gastrointestinal digestion exerted a dose response inhibition on DPP-IV activity but displayed different inhibitory potentials.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Hidrolisados de Proteína/metabolismo , Animais , Células CACO-2 , Bovinos , Decapodiformes , Digestão , Dipeptidil Peptidase 4/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Intestinos/citologia , Intestinos/efeitos dos fármacos , Intestinos/enzimologia
20.
Bioprocess Biosyst Eng ; 40(2): 161-180, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27738757

RESUMO

Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.


Assuntos
Enzimas/biossíntese , Enzimas/química , Enzimas/genética , Engenharia de Proteínas/métodos , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...