Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ovarian Res ; 17(1): 43, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374173

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a gynecological endocrine disease and could be considered a metabolic disease because it is often accompanied by obesity and insulin resistance. Brown adipose tissue (BAT) transplantation has been shown to be effective in treating PCOS rats. RESULTS: The study demonstrated that BAT successfully recovered the reproductive and metabolic phenotype of PCOS rats. The disorder estrous cycle, abnormal hyperglycemia and the expression of liver factors were improved. Differentially expressed metabolites were analyzed, among them, arachidonic acid may play a role in inhibiting cell proliferation, enhancing oxidative stress reaction, promoting estrogen expression, and reducing progesterone level in KGN cells. CONCLUSION: Our findings suggest that BAT transplantation may be a therapeutic strategy for PCOS by changing the expression of some cytokines and metabolites. Differentially expressed metabolites might be crucially important for the pathogenesis of PCOS.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Síndrome do Ovário Policístico/metabolismo , Células da Granulosa/metabolismo , Fígado/metabolismo , Obesidade/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1077604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909330

RESUMO

Introduction: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that often coexists with a metabolic disorder. Studies have demonstrated that the malfunction of adipose tissue, particularly abdominal adipose tissue, could exacerbate reproductive and metabolic problems in PCOS patients. Adipose tissue-secreted signaling mediators (e.g., lipids and metabolites) would then interact with other body organs, including the ovary, to maintain the systemic equilibrium. Methods: In this study, we examined adipose samples from PCOS patients and unaffected individuals using a liquid chromatography-mass spectrometry-based metabonomics approach (LC-MS/MS). PCOS biomarkers were selected using multivariate statistical analysis. Results: Our pathway analysis revealed that these differential metabolites could be engaged in inflammatory diseases and mitochondrial beta-oxidation. We further developed an in vitro PCOS cell model to examine the effects of hyperandrogenism on granulosa cells and related metabolic disorders. We noted that isoleucine recovered the promotive effect on cell apoptosis, inhibitory effect on cell proliferation, sex hormone secretion, and mitochondrial function induced by dehydroepiandrosterone. Our gas chromatography-mass spectrometry targeted analysis (GC-MS/MS) revealed that isoleucine was significantly decreased in PCOS patients. Discussion: Based on these results, we speculate that metabolome alterations are vital in ameliorating PCOS symptoms. This may be a novel therapeutic target for PCOS treatment. Our study provides preliminary evidence that these findings will enhance our ability to accurately diagnose and intervene in PCOS.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Gordura Subcutânea Abdominal/metabolismo , Isoleucina , Metabolômica
3.
Chemistry ; 28(5): e202102990, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34792222

RESUMO

In recent years, molecular ferroelectrics have received great attention due to their low weight, mechanical flexibility, easy preparation and excellent ferroelectric properties. Among them, crown-ether-based molecular ferroelectrics, which are typically composed of the host crown ethers, the guest cations anchored in the crown ethers, and the counterions, are of great interest because of the host-guest structure. Such a structure allows the components to occur order-disorder transition easily, which is beneficial for inducing ferroelectric phase transition. Herein, we summarized the research progress of crown ether host-guest molecular ferroelectrics, focusing on their crystal structure, phase transition, ferroelectric-related properties. In view of the small spontaneous polarization and uniaxial nature, we outlook the chemical design strategies for obtaining high-performance crown-ether-based molecular ferroelectrics. This minireview will be of guiding significance for the future exploration of crown ether host-guest molecular ferroelectrics.

4.
Front Endocrinol (Lausanne) ; 12: 747944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912296

RESUMO

Polycystic ovary syndrome (PCOS) is a complex reproductive, endocrine, and metabolic disorder in reproductive-age women. In order to explore the active metabolites of brown adipose tissue (BAT) transplantation in improving the reproductive and metabolic phenotypes in a PCOS rat model, the metabolites in the recipient's BAT were explored using the liquid chromatography-mass spectrometry technique. In total, 9 upregulated and 13 downregulated metabolites were identified. They were roughly categorized into 12 distinct classes, mainly including glycerophosphoinositols, glycerophosphocholines, and sphingolipids. Ingenuity pathway analysis predicted that these differentially metabolites mainly target the PI3K/AKT, MAPK, and Wnt signaling pathways, which are closely associated with PCOS. Furthermore, one of these differential metabolites, sphingosine belonging to sphingolipids, was randomly selected for further experiments on a human granulosa-like tumor cell line (KGN). It significantly accelerated the apoptosis of KGN cells induced by dihydrotestosterone. Based on these findings, we speculated that metabolome changes are an important process for BAT transplantation in improving PCOS. It might be a novel therapeutic target for PCOS treatment.


Assuntos
Tecido Adiposo Marrom/transplante , Metaboloma , Síndrome do Ovário Policístico/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Feminino , Teste de Tolerância a Glucose , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos
5.
Chem Soc Rev ; 50(14): 8248-8278, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34081064

RESUMO

With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.

6.
Reprod Biol Endocrinol ; 18(1): 32, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334629

RESUMO

BACKGROUND: The interface between environmental risk factors and genetic factors could contribute to the pathogenesis of hyperandrogenism and insulin resistance in polycystic ovary syndrome (PCOS); however, the underlying complex mechanism remains to be elucidated. METHODS: We used dehydroepiandrosterone (DHEA)-induced PCOS-like rat model to measure circadian clock genes and insulin resistance-related genes. Additionally, we performed in vitro experiments in mature adipocytes to verify the molecular mechanisms. RESULTS: DHEA-induced PCOS-like rats exhibited insulin resistance and arrhythmic expression of circadian clock genes in the liver and adipose tissues, particularly showing decreased brain and muscle ARNT-like protein 1 (BMAL1) expression. In addition, hyperandrogenism gave rise to negative regulation of BMAL1 expression to nicotinamide phosphoribosyltransferase and sirtuin 1, which further inhibited downstream glucose transporter type 4, leading to insulin resistance in mature adipocytes, which was consistent with our previous results in HepG2 cells. CONCLUSIONS: Decreased BMAL1 expression in the liver and adipose played a potentially novel role in the contribution of hyperandrogenism to insulin resistance, which might be a possible mechanism accounting for the pathogenesis of PCOS.


Assuntos
Fatores de Transcrição ARNTL/genética , Encéfalo/metabolismo , Hiperandrogenismo/genética , Resistência à Insulina/genética , Músculos/metabolismo , Síndrome do Ovário Policístico/genética , Células 3T3-L1 , Fatores de Transcrição ARNTL/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Relógios Circadianos/genética , Desidroepiandrosterona , Feminino , Expressão Gênica , Humanos , Hiperandrogenismo/metabolismo , Camundongos , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/metabolismo , Ratos Sprague-Dawley
7.
Gynecol Endocrinol ; 35(4): 351-355, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30382797

RESUMO

PCOS is a systemic disorder that is commonly characterized by insulin resistance (IR). ATF4 participates in the regulation of energy homeostasis and glucose metabolism, but its role in PCOS remains unclear. In this study, we found that ATF4 was highly expressed in human granulosa cells (hGCs) of PCOS patients with obesity and IR. Thus, we performed Spearman's correlation analysis to further investigate the correlation between ATF4 expression and obesity, lipometabolic disorders, or IR in PCOS. We found that increased ATF4 was an important trigger for lipid accumulation and abnormal insulin signal transduction in PCOS. In cultured KGN cells, insulin positively regulated the mRNA and protein abundance of ATF4. Overexpression of ATF4 significantly impaired insulin-stimulated phosphorylation of AKT. Collectively, our findings provided a novel insight into the molecular mechanisms underlying the occurrence and development of PCOS, implying that ATF4 may be a new molecular target for PCOS therapy.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Células da Granulosa/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Síndrome do Ovário Policístico/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Humanos , Metabolismo dos Lipídeos , Obesidade/complicações , Síndrome do Ovário Policístico/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-30498475

RESUMO

Ovulatory disorder is common in patients with hyperprolactinemia or polycystic ovary syndrome (PCOS). Previous studies have shown that ATF4 plays critical role in apoptosis and glucose homeostasis, but its role in regulating reproductive function was not explored. The present study investigated the role of ATF4 in ovarian ovulatory function. Human granulosa cells (hGCs) from 48 women newly diagnosed with PCOS and 37 controls were used to determine ATF4 expression. In vitro cultured hGCs were used to detect the upstream and downstream genes of ATF4. A shRNA- Atf4 lentiviral vector (shAtf4) was injected into rat ovaries to establish an in vivo gene knockdown model to further assess the in vivo relevance of the results from PCOS women. We found that ATF4 expression was lower in hGCs from PCOS patients than in hGCs from non-PCOS women. Many pivotal transcripts involved in cumulus-oocyte complex (COC) expansion, extracellular matrix (ECM) remodeling, and progesterone production were significantly down-regulated after ATF4 knockdown. ChIP-qPCR assays indicated that ATF4 could directly bind to the COX2 promoter and that ATF4 knockdown could attenuate human chorionic gonadotropin (hCG)-induced COX2 expression and PGE2 production. The in vivo study showed that shRNA-lentivirus mediated Atf4 knockdown in rat ovaries led to reduced number of retrieved oocytes. Collectively, these findings suggested previously unknown roles of ATF4 in ovulation. Furthermore, ATF4 malfunction in PCOS patients may impact the ovulation process, which could contribute, in part, to the pathogenesis of PCOS.

9.
EBioMedicine ; 36: 539-552, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30292674

RESUMO

BACKGROUND: The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated. METHODS: We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7. FINDINGS: EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPß. This protein, in turn, induced the expression of KLF4 and then ADAMTS1. Moreover, decreased abundance of EPHA7 was positively correlated with that of its downstream factors in hGCs of PCOS patients. Additionally, a 1-week functional EPHA7 shRNA lentivirus in rat ovaries contributed to decreased numbers of retrieved oocytes, and a 3-week functional lentivirus led to menstrual disorders and morphological polycystic changes in rat ovaries. More importantly, we found that EPHA7 triggered ovulation in rats, and it improved polycystic ovarian changes induced by DHEA in PCOS rats. INTERPRETATION: Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation. FUND: National Key Research and Development Program of China, National Natural Science Foundation, Shanghai Municipal Education Commission--Gaofeng Clinical Medicine, and Shanghai Commission of Science and Technology.


Assuntos
Ovulação/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Receptor EphA7/metabolismo , Adulto , Animais , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Células da Granulosa/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Ovário/metabolismo , Ovário/patologia , Ovulação/genética , Síndrome do Ovário Policístico/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptor EphA7/genética , Adulto Jovem
10.
ACS Omega ; 3(9): 11009-11017, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459211

RESUMO

Splitting of water into hydrogen and oxygen has become a strategic research topic. In the two semi-reactions of water splitting, water oxidation is preferred to the four-electron-transfer process with a higher overpotential (η) and is the decisive step in water splitting. Therefore, efficient water oxidation catalysts must be developed. IrO x and RuO x catalysts are currently the most efficient catalysts in water oxidation. However, the limited reserve and high prices of precious metals, such as Ir and Ru, limit future large-scale industrial production of water oxidation catalysts. In this study, we tune inert Ni-foam into highly active NiOOH/FeOOH heterostructures as water oxidation catalysts via three-step strategy (surface acid-treating, electroplating, and electrooxidation). NiOOH/FeOOH heterostructures as water oxidation catalysts only require η of 257 mV to reach a current density of 10 mA cm-2, which is superior to that of IrO2/Ni-foam (280 mV). The high electrochemically active surface area (72.50 cm2) and roughness factor demonstrate abundant interfaces in NiOOH/FeOOH heterostructures, thus accelerating water oxidation activity. The small value (4.8 Ω cm2) of charge transfer resistance (R ct) indicate that fast electronic exchange occurs between NiOOH/FeOOH heterostructures catalyst and reaction of water oxidation. Hydrogen-to-oxygen volume ratios (approximately 2:1) indicate an almost overall water splitting by the double-electrode system. Faraday efficiency of H2 or O2 is close to 90% at 2:1 hydrogen-to-oxygen volume ratio. NiOOH/FeOOH heterostructures exhibit good stability. The results provide significance in fundamental research and practical applications in solar water splitting, artificial photoelectrochemical cells, and electrocatalysts.

11.
R Soc Open Sci ; 4(12): 171409, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29308262

RESUMO

Three-dimensional (3D) graphene composites have drawn increasing attention in energy storage/conversion applications due to their unique structures and properties. Herein, we synthesized 3D honeycomb-like Ni3S2@graphene oxide composite (3D honeycomb-like Ni3S2@GO) by a one-pot hydrothermal method. We found that positive charges of Ni2+ and negative charges of NO3- in Ni(NO3)2 induced a transformation of graphene oxide with smooth surface into graphene oxide with wrinkled surface (w-GO). The w-GO in the mixing solution of Ni(NO3)2/thioacetamide/H2O evolved into 3D honeycomb-like Ni3S2@GO in solvothermal process. The GO effectively inhibited the aggregation of Ni3S2 nanoparticles. Photoelectrochemical cells based on 3D Ni3S2@GO synthesized at 60 mM l-1 Ni(NO3)2 exhibited the best energy conversion efficiency. 3D Ni3S2@GO had smaller charge transfer resistance and larger exchange current density than pure Ni3S2 for iodine reduction reaction. The cyclic stability of 3D honeycomb-like Ni3S2@GO was good in the iodine electrolyte. Results are of great interest for fundamental research and practical applications of 3D GO and its composites in solar water-splitting, artificial photoelectrochemical cells, electrocatalysts and Li-S or Na-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...