Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794255

RESUMO

BACKGROUND: Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production of sEVs using a three-dimensional (3D) bioreactor system. In addition, sEVs were developed to deliver Ginsenoside Rg1 (Rg1), a compound derived from traditional Chinese medicine, Ginseng, that has cardioprotective properties but limited bioavailability, to enhance the treatment of DIC. METHODS: The 3D bioreactor system with spinner flasks was used to expand human umbilical cord MSCs and collect MSC-conditioned medium. Subsequently, sEVs were isolated from the conditioned medium using differential ultra-centrifugation (dUC). The sEVs were loaded with Ginsenoside Rg1 by electroporation and evaluated for cardioprotective efficacy using Cell Counting Kit-8 (CCK-8) analysis, Annexin V/PI staining and live cell count of H9c2 cells under DIC. RESULTS: Using the 3D bioreactor system with spinner flasks, the expansion of MSCs reached ~600 million, and the production of sEVs was up to 2.2 × 1012 particles in five days with significantly reduced bench work compared to traditional 2D flasks. With the optimized protocol, the Ginsenoside Rg1 loading efficiency of sEVs by electroporation was ~21%, higher than sonication or co-incubation. Moreover, Rg1-loaded sEVs had attenuated DOX-induced cardiotoxicity with reduced apoptosis compared to free Ginsenoside Rg1 or sEVs. CONCLUSIONS: The 3D culture system scaled up the production of sEVs, which facilitated the Rg1 delivery and attenuated cardiomyocyte apoptosis, suggesting a potential treatment of DOX-induced cardiotoxicity.

2.
Eur J Pharm Sci ; 190: 106584, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717667

RESUMO

Extracellular vesicles (EVs) are phospholipid bilayer nano-vesicles that were originally identified to deliver signals for intercellular communications. Based on the dynamic contents including proteins, nucleic acids and metabolites, EVs have been developed into diagnostic and therapeutic fields including cardiovascular diseases, neurological disorders and infectious diseases. A growing number of investigations revealed that EVs are also powerful carriers of loaded compounds and nucleic acids as enhanced treatments. Herein, we summarized the recent engineering advances related to three major issues when applying EVs in drug delivery systems: EVs isolation, drug loading strategies and targeting delivery approaches. Moreover, current applications of traditional Chinese medicine (TCM), in composition or compound form, are searched and listed as unique combinations with EVs. Further, we discuss emerging challenges and consider future directions of drug-loading EVs in therapeutic opportunities. This review discusses pros and cons of collecting, drug loading and delivery strategies of EVs as delivery systems, and highlights the promising combination with traditional Chinese medicine to help us advance its clinical application.

3.
Clin Exp Hypertens ; 45(1): 2162537, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36780919

RESUMO

OBJECTIVES: As a common and frequently occurring disease, heart failure has been paid more and more attention, but the mechanism of its occurrence and development is still unclear. This study investigated that PGAM5 expression levels in heart failure and its underlying mechanisms in vivo and in vitro. METHODS: The inhibition of PGAM5 mRNA expression levels in patients with heart failure was compared with the normal group. RESULTS: The serum of PGAM5 mRNA expression was negative correlation with collagen I and collagen III in patients with heart failure. PGAM5 mRNA and protein expression in the heart tissue of mice with heart failure were down-regulated at a time-dependent rate. The inhibition of PGAM5 presented heart failure in the model. PGAM5 reduced inflammation and inhibited ROS-induced oxidative stress in models of heart failure. PGAM5 reduced Ferroptosis in models of heart failure. PGAM5 regulated Keap1/Nrf2 signaling pathway. IP also showed that PGAM5 protein combined with the Keap1 protein. PGAM5 could increase Keap1 protein ubiquitination. Keap1 inhibition affected the effects of PGAM5 in model of heart failure. CONCLUSIONS: We conclude that the protection of PGAM5 reduced ROS-induced oxidative stress and ferroptosis by the Keap1/Nrf2 signaling pathway in heart failure, suggesting that targeting this mechanism of PGAM5 may be a feasible strategy to treat heart failure.


Assuntos
Ferroptose , Insuficiência Cardíaca , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfoproteínas Fosfatases/metabolismo
4.
Am J Transl Res ; 9(2): 656-663, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337293

RESUMO

MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, have been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia-/reperfusion-induced cardiac injury. In the present study, we report on the role of miR-146b in myocardial I/R injury and the underlying cardio-protective mechanism. Antagomir-146b was used to explore the effects of miR-146b on cardiac ischemia/reperfusion injury (30 min ischemia followed by 180 min reperfusion). As predicted, miR-146b overexpression significantly reduced the infarct size and cardiomyocytes apoptosis and release of creatine kinase and lactate dehydrogenase. In addition, miR-146b attenuated H9c2 cell apoptosis. Furthermore, Smad4 was predicted and verified as a potential miR-146b target using bioinformatics and luciferase assay. In summary, this study demonstrated that miR-146b plays a critical protective role in cardiac ischemic injury and may provide a new therapeutic approach for the treatment of myocardial I/R injury.

5.
Int J Clin Exp Med ; 8(7): 11759-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380016

RESUMO

OBJECTIVE: To study whether miR-23 is regulated in coronary artery disease (CAD) patients and what is the possible mechanism of miR-23 in regulating CAD progression. Method Three different cohorts (including 13 AMI patients, 176 angina pectoris patients and 127 control subjects) were enrolled to investigate the expression levels of circulating miR-23 in patients with myocardial ischemia and also the relationship between plasma miR-23 and severity of coronary stenosis. Plasma miR-23 levels of participants were examined by real-time quantitative PCR. We further detected the correlation of miR-23 and VEGF by molecular and animal assays. Result miR-23 was enriched in not only diseased endothelial progenitor cells (EPCs) but also the plasma of CAD patients. Besides, we found out miR-23 was able to suppress VEGF expression and EPC activities. Reporter assays confirmed the direct binding and repression of miR-23 to the 3'-UTR of VEGF mRNA. Knock down of miR-23 not only restored VEGF levels and angiogenic activities of diseased EPCs in vitro, but further promoted blood flow recovery in ischemic limbs of mice. Conclusion Circulating miR-23 may be a new biomarker for CAD and as a potential diagnostic tool. And increased miR-23 level may be used to predict the presence and severity of coronary lesions in CAD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...