Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2309499, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624172

RESUMO

Various semiconductor devices have been developed based on 2D heterojunction materials owing to their distinctive optoelectronic properties. However, to achieve efficient charge transfer at their interface remains a major challenge. Herein, an alloy heterojunction concept is proposed. The sulfur vacancies in ZnIn2S4 are filled with selenium atoms of PdSe2. This chemically bonded heterojunction can significantly enhance the separation of photocarriers, providing notable advantages in the field of photoelectric conversion. As a demonstration, a two-terminal photodetector based on the PdSe2/ZnIn2S4 heterojunction materials is fabricated. The photodetector exhibits stable operation in ambient conditions, showcasing superior performance in terms of large photocurrent, high responsivity (48.8 mA W-1) and detectivity (1.98 × 1011 Jones). To further validate the excellent optoelectronic performance of the heterojunction, a tri-terminal phototransistor is also fabricated. Benefiting from gate voltage modulation, the photocurrent is amplified to milliampere level, and the responsivity is increased to 229.14 mA W-1. These findings collectively demonstrate the significant potential of the chemically bonded PdSe2/ZnIn2S4 alloy heterojunction for future optoelectronic applications.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668177

RESUMO

The Rashba effect appears in the semiconductors with an inversion-asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance of photoelectric devices, but also used to expand the applications of semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect of two-dimensional (2D) organic-inorganic hybrid perovskites is summarized. The origin and magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and spintronic applications of 2D perovskites.

3.
Adv Sci (Weinh) ; 11(24): e2308390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626374

RESUMO

The smart materials with multi-color and stimuli-responsive luminescence are very promising for next generation of optical information encryption and anti-counterfeiting, but these materials are still scarce. Herein, a multi-level information encryption strategy is developed based on the polychromatic emission of Sb-doped double perovskite powders (SDPPs). Cs2NaInCl6:Sb, Cs2KInCl6:Sb, and Cs2AgInCl6:Sb synthesized through coprecipitation methods exhibit broadband emissions with bright blue, cyan, and orange colors, respectively. The information transmitted by specific SDPP is encrypted when different SDPPs are mixed. The confidential information can be decrypted by selecting the corresponding narrowband filter. Then, an encrypted quick response (QR) code with improved security is demonstrated based on this multi-channel selection strategy. Moreover, the three types of SDPPs exhibit three different water-triggered luminescence switching behaviors. The confidential information represented by Cs2NaInCl6:Sb can be erased/recovered through a simple water spray/drying. Whereas, the information collected from the green channel is permanently erased by moisture, which fundamentally avoids information leakage. Therefore, different encryption schemes can be designed to meet a variety of encryption requirements. The multicolor and stimuli-responsive luminescence greatly enrich the flexibility of optical information encryption, which leaps the level of security and confidentiality.

4.
Adv Mater ; 36(18): e2311524, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38275007

RESUMO

Neuromorphic visual sensors (NVS) based on photonic synapses hold a significant promise to emulate the human visual system. However, current photonic synapses rely on exquisite engineering of the complex heterogeneous interface to realize learning and memory functions, resulting in high fabrication cost, reduced reliability, high energy consumption and uncompact architecture, severely limiting the up-scaled manufacture, and on-chip integration. Here a photo-memory fundamental based on ion-exciton coupling is innovated to simplify synaptic structure and minimize energy consumption. Due to the intrinsic organic/inorganic interface within the crystal, the photodetector based on monolithic 2D perovskite exhibits a persistent photocurrent lasting about 90 s, enabling versatile synaptic functions. The electrical power consumption per synaptic event is estimated to be≈1.45 × 10-16 J, one order of magnitude lower than that in a natural biological system. Proof-of-concept image preprocessing using the neuromorphic vision sensors enabled by photonic synapse demonstrates 4 times enhancement of classification accuracy. Furthermore, getting rid of the artificial neural network, an expectation-based thresholding model is put forward to mimic the human visual system for facial recognition. This conceptual device unveils a new mechanism to simplify synaptic structure, promising the transformation of the NVS and fostering the emergence of next generation neural networks.


Assuntos
Compostos de Cálcio , Redes Neurais de Computação , Óxidos , Sinapses , Titânio , Óxidos/química , Titânio/química , Sinapses/fisiologia , Compostos de Cálcio/química , Humanos , Fótons , Visão Ocular/fisiologia
5.
Nanotechnology ; 34(50)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748450

RESUMO

Photovoltaic device is highly dependent on the weather, which is completely ineffective on rainy days. Therefore, it is very significant to design an all-weather power generation system that can utilize a variety of natural energy. This work develops a water droplet friction power generation (WDFG)/solar-thermal power generation (STG) hybrid system. The WDFG consists of two metal electrodes and a candle soot/polymer composite film, which also can be regarded as a capacitor. Thus, the capacitor coupled power generation (C-WDFG) device can achieve a sustainable and stable direct-current (DC) output under continuous dripping without external conversion circuits. A single device can produce an open-circuit voltage of ca.0.52 V and a short-circuit current of ca.0.06 mA, which can be further scaled up through series or parallel connection to drive commercial electronics. Moreover, we demonstrate that the C-WDFG is highly compatible with the thermoelectric device. The excellent photothermal performance of soot/polymer composite film can efficiently convert solar into heat, which is then converted to electricity by the thermoelectric device. Therefore, this C-WDFG/STG hybrid system can work in both rainy and sunny days.

6.
Opt Express ; 31(15): 24667-24677, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475287

RESUMO

Optical multiplexing is a pivotal technique for augmenting the capacity of optical data storage (ODS) and increasing the security of anti-counterfeiting. However, due to the dearth of appropriate storage media, optical multiplexing is generally restricted to a single dimension, thus curtailing the encoding capacity. Herein, the co-multiplexing spectral and temporal dimensions are proposed for optical encoding based on photoluminescence (PL) and persistent-luminescence (PersL) at four different wavelengths. Each emission color comprises four luminescence modes. The further multiplexing of four wavelengths leads to the maximum encoding capacity of 8 bits at each pixel. The wavelength difference between adjacent peaks is larger than 50 nm. The well-separated emission wavelengths significantly lower the requirements for high-resolution spectrometers. Moreover, the information is unable to be decoded until both PL and PersL spectra are collected, suggesting a substantial improvement in information security and the security level of anti-counterfeiting.

7.
Nanoscale ; 15(29): 12212-12219, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37395090

RESUMO

Increasing attention has been paid recently to superwettability and its prospective potential applications in various fields. A new approach towards the establishment of flexible, self-assembled superhydrophobic surfaces with self-reported wettability on a variety of substrates has been advanced. The approach involves the fabrication of a dense monolayer of photonic crystal films that possess a layered structure with superior adhesion at the liquid-gas-solid interface. Thus, the resulting hierarchical photonic crystal film with a structurally hydrophobic surface offers a promising addition to the creation of durable and flexible superhydrophobic surfaces across a variety of substrates that exhibit the self-reported wettability. Furthermore, a bifunctional membrane that can effectively remove oil and adsorb heavy metal ions contained in wastewater has been developed for potential use in large-scale industrial wastewater treatment. This research sheds fresh light on the application of bionics and the lotus and mussel functions in oil/water separation.

8.
Opt Lett ; 47(24): 6468-6471, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538464

RESUMO

We present a snapshot multi-frame parallel holographic microscopy system through a reconfigurable optical comb source, which consists of a digital micromirror device (DMD) based spectrum filter system and a spectroscopic Michelson interferometric system. The proposed system allows arbitrarily tuning comb spacing and comb number, and the capturing of multi-frame images without overlap in one exposure. As a result, high-quality spectral holograms can be obtained with less acquisition time. The performance of the system is detailed in the experiment and 45-wavelengths holographic imaging for perovskite micro-platelets is conducted, which proves the system has the ability to realize high-performance four-dimensional (4D) imaging.

9.
Research (Wash D C) ; 2022: 9896548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204245

RESUMO

Multicolor fluorescence of mixed halide perovskites enormously enables their applications in photonics and optoelectronics. However, it remains an arduous task to obtain multicolor emissions from perovskites containing single halogen to avoid phase segregation. Herein, a fluorescent composite containing Eu-based metal-organic frameworks (MOFs), 0D Cs4PbBr6, and 3D CsPbBr3 is synthesized. Under excitations at 365 nm and 254 nm, the pristine composite emits blue (B) and red (R) fluorescence, which are ascribed to radiative defects within Cs4PbBr6 and 5D0→7FJ transitions of Eu3+, respectively. Interestingly, after light soaking in the ambient environment, the blue fluorescence gradually converts into green (G) emission due to the defect repairing and 0D-3D phase conversion. This permanent and unique photochromic effect enables anticounterfeiting and microsteganography with increased security through a micropatterning technique. Moreover, the RGB luminescence is highly stable after encapsulation by a transparent polymer layer. Thus, trichromatic light-emitting modules are fabricated by using the fluorescent composites as color-converting layers, which almost fully cover the standard color gamut. Therefore, this work innovates a strategy for construction of tunable multicolor luminescence by manipulating the radiative defects and structural dimensionality.

10.
Nanotechnology ; 33(28)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35385836

RESUMO

Despite the demonstrated high-efficiency of solar cells and light-emitting devices based on two-dimensional (2D) perovskites, intrinsic stability of the 2D perovskites is yet far from satisfactory. In this work, we find the 2D (BA)2PbI4perovskite crystals rapidly degrade in the ambient conditions and the photoluminescence (PL) nearly completely quenches in 6 d. Moreover, the PL shoulder band due to defects and absorption band of PbI2gradually rise during degradation, suggesting the precipitation of PbI2. Besides, rod structures are observed in the degraded crystals, which are attributed to the formation of one-dimensional (1D) (BA)3PbI5perovskites. And the degradation can be largely retarded by decreasing the humidity during storage. Therefore, a chemical reaction for the degradation of (BA)2PbI4is proposed, revealing the interactions between water molecules and undercoordinated defects are very critical for understanding the degradation. Enlightened by these findings, dimethyl itaconate (DI) treatment is developed to passivate the defects and block the intrusion of moisture to improve the stability of the (BA)2PbI4. After storage in the ambient environment for 16 d, the DI treated (BA)2PbI4only shows a slight surface degradation without formation of any nanorod-like structures, and the PL intensity retains about 70%. Therefore, our systematic study provides a comprehensive understanding on the degradation dynamics of 2D perovskites, which will promote future development of intrinsically stable 2D perovskites.

11.
ACS Appl Mater Interfaces ; 14(10): 12412-12422, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234446

RESUMO

Photoinduced phase segregation (PPS) is considered as a dominant factor that greatly deteriorates the performances of mixed-halide perovskite devices. However, the mechanism of PPS is still under fierce debate. Herein, CsPb(Brx/Cl1-x)3 microplatelets (MPs) with homogeneous and heterogeneous surfaces are obtained by controlling the growth conditions. Under continuous irradiation, a new photoluminescence (PL) band at 516 nm gradually appears in the heterogeneous MPs, accompanied with the decreased emission of the mixed phase at 480 nm, revealing the occurrence of PPS, while the photoirradiation only leads to slight PL dimming without PPS in the homogeneous MPs. The direct correlation between PPS and the structural heterogeneity indicates that the localized electric field-induced drift (LEFD) of halide ions/carriers is responsible for the PPS. In situ microfluorescence images evidence that the migration of halide ions is directed by the structural heterogeneity-induced localized electric field. Our refined model not only consolidates that PPS can be suppressed by eliminating the defects but also reveals that PPS can be directed by the distribution of defects. Therefore, a fluorescence micropatterning technique is developed based on PPS.

12.
Nanotechnology ; 33(11)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874311

RESUMO

The expression of membrane type-1 matrix metalloproteinase (MT1-MMP) in cancer cells is critical for understanding the development, invasion and metastasis of cancers. In this study, we devised an interference-free surface-enhanced Raman scattering (SERS) nanoprobe with high selectivity and specificity for MT1-MMP. The nanoprobe was comprised of silver core-silica shell nanoparticle with a Raman reporter tag (4-mercaptobenzonitrile) embedded in the interface. Moreover, the nitrile group in 4-mercaptobenzonitrile shows a unique characteristic peak in the Raman-silent region (1800-2800 cm-1), which eliminates spectral overlapping or background interference in the Raman fingerprint region (500-1800 cm-1). After surface modification with a targeting peptide, the nanoprobe allowed visualization and evaluation of MT1-MMP in breast cancer cells via SERS spectrometry. This interference-free, peptide-functionalized SERS nanoprobe is supposed to be conducive to early diagnosis and invasive assessment of cancer in clinical settings.


Assuntos
Neoplasias da Mama/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Nanopartículas Metálicas/química , Imagem Molecular/métodos , Análise Espectral Raman/métodos , Neoplasias da Mama/diagnóstico , Linhagem Celular Tumoral , Feminino , Humanos , Sondas Moleculares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Prata/química
13.
Nanoscale ; 13(34): 14450-14459, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473165

RESUMO

Direct laser writing (DLW) is a mask-free and cost-efficient micro-fabrication technology, which has been explored to pattern structures on perovskites. However, there is still a lack of research on DLW methods for microsteganography. Herein, we developed a sophisticated DLW condition to pattern on CsPbBr3 perovskite micro-platelets (MPs). In addition to the reversible PL quenching caused by photo-induced ion migration, permanent nonradiative centers are also produced by the DLW treatment. Therefore, the patterned information is retained after long-term storage. Meanwhile, the mild DLW condition only results in a faint trace, which is almost invisible under a regular optical microscope. Thus, the patterned information is hidden unless applying an excitation source, which paves the way for applications in microsteganography and anti-counterfeiting. As a proof-of-concept, different patterns are drawn on the CsPbBr3 MPs by DLW, which are only observable under a fluorescence microscope.

14.
ACS Appl Mater Interfaces ; 13(28): 33566-33573, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34240841

RESUMO

In this work, photothermal materials are integrated with a temperature-sensitive hydrogel and structural color for visually detecting solar intensity. Inspired by the functional performance of beetles, the photothermal layer is constructed by depositing candle soot on a film of Cu nanoparticles, while the temperature-sensitive colored hydrogel is fabricated by self-assembling colloidal photonic crystals on poly(N-isopropylacrylamide) (PNiPAM). The deposition of candle soot not only improves the photothermal performance but also leads to a superhydrophobic surface with a self-cleaning function. The photothermal layer absorbs sunlight and converts it into heat, which is then transferred to the hydrogel. The structural color of the hydrogel changes due to the heat-induced volume shrinkage. As the solar intensity increases from 0.62 to 1.27 kW/m2, the structural color conspicuously changes from red to orange, yellow, green, cyan, and blue, with reflection peaks shifting from 640 to 460 nm accordingly. The color change is highly apparent, which can be easily observed by the naked eye, suggesting that the solar intensity can be easily detected by reading out the structural color. This power-free and self-cleaning solar sensor can work for a long period without maintenance, which is suitable for a wide application prospect, such as smart home and agriculture.

15.
Nanotechnology ; 32(13): 135701, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33307542

RESUMO

During synthesis, device processes, and applications of perovskite nanocrystals (NCs), there are usually inevitable interactions between perovskite NCs and polar solvents. To elaborately control the properties of perovskite NCs, investigating the effects of solvent polarity on perovskite NCs is thus highly important. Herein, fluorescent variations induced by different solvents into CsPbBr3 NCs solution are systematically studied. In this report, it is found that when CsPbBr3 NCs are treated with polar solvents, the fluorescence intensity decreases with a general redshift of fluorescence peak position. Moreover, the fluorescence quenching and peak position shift amplitude monotonously increase with the solvent polarity. Absorption spectra and fluorescent lifetime suggest that, with addition of polar solvents, the surface of NCs are destroyed and defect states are generated, leading to the fluorescent variations. Besides, dielectric constant of the solvent also increases with polarity, which may weaken the quantum confinement effect and decrease the exciton binding energy. We find the fluorescence may slightly blue shift if the emission of free carrier is strong enough with certain solvents, such as dimethylsulfoxide (DMSO). We also find the fluorescence intensity generally deceases to a stable state in 2 min, indicating quick interactions between CsPbBr3 NCs and solvents. However, water continuously quenches the fluorescence of CsPbBr3 NCs up to 72 h due to the poor miscibility between water and n-hexane. This work not only provides a comprehensive understanding on the fluorescent dynamics of CsPbBr3 NCs in polar solvents but also affords a potential fluorescent indicator for solvent polarity.

16.
ACS Appl Mater Interfaces ; 12(50): 56579-56586, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259195

RESUMO

Surgical mask is recommended by the World Health Organization for personal protection against disease transmission. However, most of the surgical masks on the market are disposable that cannot be self-sterilized for reuse. Thus, when confronting the global public health crisis, a severe shortage of mask resource is inevitable. In this paper, a novel low-cost electrothermal mask with excellent self-sterilization performance and portability is reported to overcome this shortage. First, a flexible, ventilated, and conductive cloth tape is patterned and adhered to the surface of a filter layer made of melt-blown nonwoven fabrics (MNF), which functions as interdigital electrodes. Then, a graphene layer with premier electric and thermal conductivity is coated onto the MNF. Operating under a low voltage of 3 V, the graphene-modified MNF (mod-MNF) can quickly generate large amounts of heat to achieve a high temperature above 80 °C, which can kill the majority of known viruses attached to the filter layer and the mask surface. Finally, the optimized graphene-modified masks based on the mod-MNF filter retain a relatively high particulate matter (PM) removal efficiency and a low-pressure drop. Moreover, the electrothermal masks can maintain almost the same PM removal efficiency over 10 times of electrifying, suggesting its outstanding reusability.

17.
ACS Appl Mater Interfaces ; 12(36): 40979-40984, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32794686

RESUMO

Materials with specific wettability properties have aroused enormous interest and research for their broad application prospects in chemical reaction, medical diagnosis, biological analysis, etc. Here, inspired by the unique Janus wettability of lotus leaf and Bragg stacks of beetles, we present a free-standing film with Janus wettability and tunable structural color for water quality monitoring. This film is constructed by using a flexible polymer polyurethane (PU) to pack poly(N-isopropyl acrylamide-bis-acrylamide-acrylic acid) (P(NiPAAm-bis-AA))/TiO2 one-dimensional photonic crystals (1DPCs) into a free-standing state with Janus wettability and tunable structural color. The outer top surface of the film could achieve vivid structural color and a superhydrophobic ability; meanwhile, the outer lower surface could achieve a superhydrophilic ability. Owing to the outstanding pH-sensitive property of the P(NiPAAm-bis-AA), the Janus films could switch its structural color under different pH conditions. This imparts the free-standing film with stability and an antirotation property on the air-water interface. Based on this phenomenon, we have demonstrated a Janus wettability film, together with tunable structural color for water quality monitoring, which gives the bioinspired materials high potential applications in environmental protection.


Assuntos
Fótons , Qualidade da Água , Cor , Cristalização , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície , Molhabilidade
18.
Nanotechnology ; 30(42): 425403, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31295739

RESUMO

Solar-driven water evaporation is considered to be an effective method for seawater desalination and wastewater purification. Here, we report a novel solar steam generation (SSG) system based on reduced graphene oxide (rGO)/nickel foam. Porous rGO foam acting as a photothermal conversion layer is fabricated by coating the rGO microsheets on the metallic nickel foam. The porous structure shows a rough surface, which can improve the harvest of light by scattering effect. On the other hand, the porous structure ensures the rapid flow of steam in the evaporation process. This SSG system based on rGO/nickel foam converts the absorbed solar energy into heat energy at the water-air interface and can effectively evaporate (∼83.4%) under low irradiation of 1 sun (1 kw m-2). The system shows great potential for the practical applications of water treatment at large-scale because of the high efficiency, simple preparation method and low cost.

19.
Nanotechnology ; 30(1): 015402, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362462

RESUMO

Solar steam generation provides a renewable and environmentally friendly approach to solve the water shortage issue. The pursuit of efficient, stable, and cheap photothermal agents is thus of great significance. In this work, Cu nanoparticles (NPs) fabricated simply by a substitution reaction, exhibit a near-unity (∼97.7%) light absorption, covering a broad incident angle and wavelength range (200-1300 nm). Thereby, a high photothermal conversion efficiency of 93% is achieved. The excellent photothermal performance offers a unique opportunity for the development of solar steam generation. By coating the Cu NPs on a cellulose membrane, a solar steam generation efficiency up to 73% is acquired at a low irradiation power density of 2 kW m-2 (1 kW m-2 = 1 sun). Moreover, the Cu NPs are recyclable with the high stability being resistant to heat, photoirradiation and corrosion of brine.

20.
Micromachines (Basel) ; 9(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30393289

RESUMO

An efficient electron field emitter based on a monolayer graphene coated well aligned Mo tip array has been designed, fabricated, and evaluated. The advantages of this hybrid nanostructure film morphology are explored and discussed. Efficient and stable field emissions with low turn-on fields have been observed with the new devices. It is further found that the combination of graphene and Mo tip array leads to significant improvements in efficiency for the nanoscale heterostructure emitters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...