Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430746

RESUMO

The nucleotide-binding and leucine-rich repeat (NB-LRR) genes, also known as resistance (R)-genes, play an important role in the activation of immune responses. In recent years, large-scale studies have been performed to highlight the diversification of plant NB-LRR repertories. It is well known that, to provide new functionalities, NB-LRR sequences are subject to duplication, domain fusions and acquisition and other kinds of mutations. Although some mechanisms that govern NB-LRR protein domain adaptations have been uncovered, to retrace the plant-lineage-specific evolution routes of R protein structure, a multi-genome comparative analysis was performed. This study allowed us to define groups of genes sharing homology relationships across different species. It is worth noting that the most populated groups contained well-characterized R proteins. The arsenal profile of such groups was investigated in five botanical families, including important crop species, to underline specific adaptation signatures. In addition, the dissection of 70 NB domains of well-characterized R-genes revealed the NB core motifs from which the three main R protein classes have been diversified. The structural remodeling of domain segments shaped the specific NB-LRR repertoires observed in each plant species. This analysis provided new evolutionary and functional insights on NB protein domain shuffling. Taken together, such findings improved our understanding of the molecular adaptive selection mechanisms occurring at plant R loci.


Assuntos
Proteínas de Plantas , Plantas , Humanos , Domínios Proteicos , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Aclimatação
2.
Genome Biol Evol ; 11(12): 3466-3477, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730154

RESUMO

Plant innate immunity mostly relies on nucleotide-binding (NB) and leucine-rich repeat (LRR) intracellular receptors to detect pathogen-derived molecules and to induce defense responses. A multitaxa reconstruction of NB-domain associations allowed us to identify the first NB-LRR arrangement in the Chlorophyta division of the Viridiplantae. Our analysis points out that the basic NOD-like receptor (NLR) unit emerged in Chlorophytes by horizontal transfer and its diversification started from Toll/interleukin receptor-NB-LRR members. The operon-based genomic structure of Chromochloris zofingiensis NLR copies suggests a functional origin of NLR clusters. Moreover, the transmembrane signatures of NLR proteins in the unicellular alga C. zofingiensis support the hypothesis that the NLR-based immunity system of plants derives from a cell-surface surveillance system. Taken together, our findings suggest that NLRs originated in unicellular algae and may have a common origin with cell-surface LRR receptors.


Assuntos
Transferência Genética Horizontal , Proteínas NLR/genética , Proteínas de Plantas/genética , Domínios Proteicos/genética , Clorófitas/classificação , Clorófitas/genética , Resistência à Doença/genética , Evolução Molecular , Genoma de Planta/genética , Genômica , Proteínas NLR/metabolismo , Motivos de Nucleotídeos , Óperon , Filogenia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética
3.
Front Plant Sci ; 9: 441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719544

RESUMO

The advent of new sequencing technologies is revolutionizing the studies of ancient DNA (aDNA). In the last 30 years, DNA extracted from the ancient remains of several plant species has been explored in small-scale studies, contributing to understand the adaptation, and migration patterns of important crops. More recently, NGS technologies applied on aDNA have opened up new avenues of research, allowing investigation of the domestication process on the whole-genome scale. Genomic approaches based on genome-wide and targeted sequencing have been shown to provide important information on crop evolution and on the history of agriculture. Huge amounts of next-generation sequencing (NGS) data offer various solutions to overcome problems related to the origin of the material, such as degradation, fragmentation of polynucleotides, and external contamination. Recent advances made in several crop domestication studies have boosted interest in this research area. Remains of any nature are potential candidates for aDNA recovery and almost all the analyses that can be made on fresh DNA can also be performed on aDNA. The analysis performed on aDNA can shed light on many phylogenetic questions concerning evolution, domestication, and improvement of plant species. It is a powerful instrument to reconstruct patterns of crop adaptation and migration. Information gathered can also be used in many fields of modern agriculture such as classical breeding, genome editing, pest management, and product promotion. Whilst unlocking the hidden genome of ancient crops offers great potential, the onus is now on the research community to use such information to gain new insight into agriculture.

4.
Nucleic Acids Res ; 46(D1): D1197-D1201, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29156057

RESUMO

The Plant Resistance Genes database (PRGdb; http://prgdb.org) has been redesigned with a new user interface, new sections, new tools and new data for genetic improvement, allowing easy access not only to the plant science research community but also to breeders who want to improve plant disease resistance. The home page offers an overview of easy-to-read search boxes that streamline data queries and directly show plant species for which data from candidate or cloned genes have been collected. Bulk data files and curated resistance gene annotations are made available for each plant species hosted. The new Gene Model view offers detailed information on each cloned resistance gene structure to highlight shared attributes with other genes. PRGdb 3.0 offers 153 reference resistance genes and 177 072 annotated candidate Pathogen Receptor Genes (PRGs). Compared to the previous release, the number of putative genes has been increased from 106 to 177 K from 76 sequenced Viridiplantae and algae genomes. The DRAGO 2 tool, which automatically annotates and predicts (PRGs) from DNA and amino acid with high accuracy and sensitivity, has been added. BLAST search has been implemented to offer users the opportunity to annotate and compare their own sequences. The improved section on plant diseases displays useful information linked to genes and genomes to connect complementary data and better address specific needs. Through, a revised and enlarged collection of data, the development of new tools and a renewed portal, PRGdb 3.0 engages the plant science community in developing a consensus plan to improve knowledge and strategies to fight diseases that afflict main crops and other plants.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Software , Viridiplantae/genética , Genes de Plantas , Internet , Anotação de Sequência Molecular , Interface Usuário-Computador
6.
BMC Plant Biol ; 15: 51, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25850033

RESUMO

BACKGROUND: ATP-binding cassette proteins have been recognized as playing a crucial role in the regulation of growth and resistance processes in all kingdoms of life. They have been deeply studied in vertebrates because of their role in drug resistance, but much less is known about ABC superfamily functions in plants. RESULTS: Recently released plant genome sequences allowed us to identify 803 ABC transporters in four vascular plants (Oryza. sativa, Solanum lycopersicum, Solanum tuberosum and Vitis vinifera) and 76 transporters in the green alga Volvox carteri, by comparing them with those reannotated in Arabidopsis thaliana and the yeast Saccharomyces cerevisiae. Retrieved proteins have been phylogenetically analysed to infer orthologous relationships. Most orthologous relationships in the A, D, E and F subfamilies were found, and interesting expansions within the ABCG subfamily were observed and discussed. A high level of purifying selection is acting in the five ABC subfamilies A, B, C, D and E. However, evolutionary rates of recent duplicate genes could influence vascular plant genome diversification. The transcription profiles of ABC genes within tomato organs revealed a broad functional role for some transporters and a more specific activity for others, suggesting the presence of key ABC regulators in tomato. CONCLUSIONS: The findings achieved in this work could contribute to address several biological questions concerning the evolution of the relationship between genomes of different species. Plant ABC protein inventories obtained could be a valuable tool both for basic and applied studies. Indeed, interpolation of the putative role of gene functions can accelerate the discovering of new ABC superfamily members.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Evolução Molecular , Variação Genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Volvox/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Perfilação da Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Magnoliopsida/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Transcriptoma , Volvox/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...