Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(7): 585-598, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37194220

RESUMO

Intensive farming systems benefit from the additional ecosystem services provided by tree integration, which generate different growing conditions for the main crop. We studied yerba mate (Ilex paraguariensis ) responses to growing conditions in monoculture (the conventional cropping system of yerba mate) and in three agroforestry systems: (1) yerba mate+Balfourodendron riedelianum ; (2) yerba mate+Peltophorum dubium ; and (3) yerba mate+Toona ciliata . Mainly, we focused on water relations and the hydraulic architecture of yerba mate. Agroforestry cropping systems provided a shade cover of around 34-45% and yielded as high as the conventional system. The shade cover influenced the allocation pattern to enhance leaf light capture, incrementing the leaf area to the sapwood area at the branch level. We also found a higher specific hydraulic conductivity in stems of yerba mate plants in consortium with T. ciliata than in the conventional cropping system, as well as higher resistance to water deficits due to lower vulnerability to embolism in the stems. During a severe drought, yerba mate plants had a similar stem and leaf water potential in both agricultural systems. Still, plants in monoculture had lower hydraulic safety margins and higher signs of leaf damage and mortality. This indicates that integrating trees into the yerba mate cultivation increases water stress resistance which would be beneficial to avoid restrictions on crop productivity under severe droughts induced by climate change.


Assuntos
Ilex paraguariensis , Extratos Vegetais , Extratos Vegetais/farmacologia , Ecossistema
2.
Funct Plant Biol ; 47(9): 779-791, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513382

RESUMO

Frost and drought are key stress factors limiting the growth and distribution of tree species. Resistance to stress involves energy costs that may result in trade-offs between different functional traits. Structures or mechanisms that can help to withstand stress imply differences in the carbon economy of the species. Although adaptive responses to frost and drought resistance are usually of a similar nature, they are rarely assessed simultaneously. We investigated these resistance mechanisms in 10 canopy tree species coexisting in the semi-deciduous subtropical forests of northern Argentina. We measured leaf lifespan, anatomical, photosynthetic and water relations traits and performed a thermal analysis in leaves to determined ice nucleation and tissue damage temperatures. Our results showed that evergreen and deciduous species have different adaptive responses to cope with freezing temperatures and water deficits. Evergreen species exhibited cold tolerance, while deciduous species were more resistant to hydraulic dysfunction and showed greater water transport efficiency. Further research is needed to elucidate resistance strategies to stress factors at the whole tree- and stand level, and possible links with hydraulic safety and efficiency among different phenological groups. This will allow us to predict the responses of subtropical forest species to changes in environmental conditions under climate change scenarios.


Assuntos
Secas , Árvores , Argentina , Florestas , Clima Tropical
3.
Tree Physiol ; 38(12): 1841-1854, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986095

RESUMO

Tree physiological processes are affected not only by environmental conditions, but also by phenological leaf stages. During foliar expansion, rapid changes occur, such as the activation of metabolic processes that encompass a hydraulic link between xylem and phloem pathways at a whole-tree level. Daily and seasonal changes in stem diameter may reveal different temporal dynamics of water use and recharge in tree reservoirs. Foliar phenological patterns were studied in relation to stem dimensional changes in 10 canopy tree species with different phenological patterns (three deciduous, three brevideciduous and four evergreen species). Additionally, we assessed (i) daily sap flow fluctuations in branch and main stem, (ii) diurnal changes in sapwood volumetric water content and (iii) stem radius variations during leafless, expanding and mature leaves periods in three of the 10 tree species (two deciduous and one brevideciduous). During the leaf expansion phase, the diameter of trees decreased in all 10 species, with a larger impact on deciduous and brevideciduous species. For the subset of deciduous and brevideciduous species, the movement of long-distance water transport occurred first near the branches and then in the main stem during the leafless stage. Changes in stored water use and a decrease in the volumetric water content and the radius of the main stem during this period suggest that there is a contribution of water from internal stem reservoirs toward the construction of new leaves.


Assuntos
Florestas , Folhas de Planta/metabolismo , Árvores/metabolismo , Argentina , Folhas de Planta/anatomia & histologia , Caules de Planta/metabolismo , Árvores/anatomia & histologia , Água/metabolismo
4.
Tree Physiol ; 35(4): 354-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25428825

RESUMO

Wood biophysical properties and the dynamics of water storage discharge and refilling were studied in the trunk of canopy tree species with diverse life history and functional traits in subtropical forests of northeast Argentina. Multiple techniques assessing capacitance and storage capacity were used simultaneously to improve our understanding of the functional significance of internal water sources in trunks of large trees. Sapwood capacitances of 10 tree species were characterized using pressure-volume relationships of sapwood samples obtained from the trunk. Frequency domain reflectometry was used to continuously monitor the volumetric water content in the main stems. Simultaneous sap flow measurements on branches and at the base of the tree trunk, as well as diurnal variations in trunk contraction and expansion, were used as additional measures of stem water storage use and refilling dynamics. All evidence indicates that tree trunk internal water storage contributes from 6 to 28% of the daily water budget of large trees depending on the species. The contribution of stored water in stems of trees to total daily transpiration was greater for deciduous species, which exhibited higher capacitance and lower sapwood density. A linear relationship across species was observed between wood density and growth rates with the higher wood density species (mostly evergreen) associated with lower growth rates and the lower wood density species (mostly deciduous) associated with higher growth rates. The large sapwood capacitance in deciduous species may help to avoid catastrophic embolism in xylem conduits. This may be a low-cost adaptation to avoid water deficits during peak water use at midday and under temporary drought periods and will contribute to higher growth rates in deciduous tree species compared with evergreen ones. Large capacitance appears to have a central role in the rapid growth patterns of deciduous species facilitating rapid canopy access as these species are less shade tolerant than evergreen species.


Assuntos
Caules de Planta/metabolismo , Transpiração Vegetal , Árvores/fisiologia , Clima Tropical , Água/fisiologia , Madeira/crescimento & desenvolvimento , Xilema , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...