Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 21(4): 577-87, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19146952

RESUMO

Some data in the literature suggest that serine/threonine phosphorylation is required for activation of the mixed-lineage kinases (MLKs), a subgroup of mitogen-activated protein kinase kinase kinases (MAPKKKs). In this report, we demonstrate that the MLK family member DLK is activated and concurrently tyrosine-phosphorylated in cells exposed to the protein tyrosine phosphatase inhibitor vanadate. Tyrosine phosphorylation appears crucial for activation as incubation of vanadate-activated DLK molecules with a tyrosine phosphatase substantially reduced DLK enzymatic activity. Interestingly, the effects of vanadate on DLK are completely blocked by treatment with a Src family kinase inhibitor, PP2, or the expression of short hairpin RNA (shRNA) directed against Src. DLK also fails to undergo vanadate-stimulated tyrosine phosphorylation and activation in fibroblasts which lack expression of Src, Yes and Fyn, but reintroduction of wild-type Src or Fyn followed by vanadate treatment restores this response. In addition to vanadate, stimulation of cells with platelet-derived growth factor (PDGF) also induces tyrosine phosphorylation and activation of DLK by a Src-dependent mechanism. DLK seems important for PDGF signaling because its depletion by RNA interference substantially reduces PDGF-stimulated ERK and Akt kinase activation. Thus, our findings suggest that Src-dependent tyrosine phosphorylation of DLK may be important for regulation of its activity, and they support a role for DLK in PDGF signaling.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Vanadatos/farmacologia , Quinases da Família src/metabolismo , Animais , Becaplermina , Células COS/efeitos dos fármacos , Células COS/enzimologia , Chlorocebus aethiops , Ciclosporina/farmacologia , Proteínas Quinases Associadas com Morte Celular , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Células NIH 3T3/efeitos dos fármacos , Células NIH 3T3/enzimologia , Ácido Okadáico/farmacologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-sis , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão/fisiologia
2.
J Biol Chem ; 281(42): 31467-77, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16931512

RESUMO

Dual leucine zipper-bearing kinase (DLK) is a mixed-lineage kinase family member that acts as an upstream activator of the c-Jun N-terminal kinases. As opposed to other components of this pathway, very little is currently known regarding the mechanisms by which DLK is regulated in mammalian cells. Here we identify the stress-inducible heat shock protein 70 (Hsp70) as a negative regulator of DLK expression and activity. Support for this notion derives from data showing that Hsp70 induces the proteasomal degradation of DLK when both proteins are co-expressed in COS-7 cells. Hsp70-mediated degradation occurs with expression of wild-type DLK, which functions as a constitutively activated protein in these cells but not kinase-defective DLK. Interestingly, the Hsp70 co-chaperone CHIP, an E3 ubiquitin ligase, seems to be indispensable for this process since Hsp70 failed to induce DLK degradation in COS-7 cells expressing a CHIP mutant unable to catalyze ubiquitination or in immortalized fibroblasts derived from CHIP knock-out mice. Consistent with these data, we have found that endogenous DLK becomes sensitive to CHIP-dependent proteasomal degradation when it is activated by okadaic acid and that down-regulation of Hsp70 levels with an Hsp70 antisense attenuates this sensitivity. Therefore, our studies suggest that Hsp70 contributes to the regulation of activated DLK by promoting its CHIP-dependent proteasomal degradation.


Assuntos
Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , MAP Quinase Quinase Quinases/biossíntese , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Transgênicos , Ácido Okadáico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
Biochem J ; 400(1): 91-7, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16834570

RESUMO

Mutations in the Drosophila kep1 gene, encoding a single maxi KH (K homology) domain-containing RNA-binding protein, result in a reduction of fertility in part due to the disruption of the apoptotic programme during oogenesis. This disruption is concomitant with the appearance of an alternatively spliced mRNA isoform encoding the inactive caspase dredd. We generated a Kep1 antibody and have found that the Kep1 protein is present in the nuclei of both the follicle and nurse cells during all stages of Drosophila oogenesis. We have shown that the Kep1 protein is phosphorylated in ovaries induced to undergo apoptosis following treatment with the topoisomerase I inhibitor camptothecin. We have also found that the Kep1 protein interacts specifically with the SR (serine/arginine-rich) protein family member ASF/SF2 (alternative splicing factor/splicing factor 2). This interaction is independent of the ability of Kep1 to bind RNA, but is dependent on the phosphorylation of the Kep1 protein, with the interaction between Kep1 and ASF/SF2 increasing in the presence of activated Src. Using a CD44v5 alternative splicing reporter construct, we observed 99% inclusion of the alternatively spliced exon 5 following kep1 transfection in a cell line that constitutively expresses activated Src. This modulation in splicing was not observed in the parental NIH 3T3 cell line in which we obtained 7.5% exon 5 inclusion following kep1 transfection. Our data suggest a mechanism of action in which the in vivo phosphorylation status of the Kep1 protein affects its affinity towards its protein binding partners and in turn may allow for the modulation of alternative splice site selection in Kep1-ASF/SF2-dependent target genes.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Apoptose/efeitos dos fármacos , Ligação Competitiva , Células COS , Camptotecina/farmacologia , Linhagem Celular , Chlorocebus aethiops , Drosophila/efeitos dos fármacos , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Ativação Enzimática , Feminino , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Mutação/genética , Células NIH 3T3 , Ovário/citologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Quinases da Família src/metabolismo
4.
Biochem J ; 379(Pt 2): 283-9, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-14705965

RESUMO

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Metiltransferases/genética , Dados de Sequência Molecular , Proteína-Arginina N-Metiltransferases/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
5.
Proc Natl Acad Sci U S A ; 100(4): 1814-9, 2003 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-12563030

RESUMO

The Drosophila kep1 gene encodes an RNA binding protein related to the murine QUAKING apoptotic inducer. We have previously shown that kep1 can induce apoptosis when transfected into different cell lines. To better define the role of Kep1 in apoptosis, we generated kep1 null flies. These flies were viable, but females displayed reduced fertility, with approximately half of the eggs laid from kep1- homozygotes failing to hatch. In addition, loss of kep1 suppressed GMR-rpr-mediated apoptosis in the Drosophila eye, and kep1 mutant flies had increased susceptibility to Escherichia coli infection. We found that Kep1 bound dredd RNA in vitro, and that extracts prepared from kep1 mutant ovaries had markedly reduced proteolytic cleavage activity toward the caspase-8 target substrate IETD-7-amino-4-trifluoromethyl coumarin. We observed increased levels of the beta isoform of dredd mRNA in kep1 mutants as compared with wild-type. Taken together, our results suggest that Kep1 regulates apoptosis by influencing the processing of dredd RNA.


Assuntos
Caspases/genética , Mutação , Isoformas de Proteínas/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Sequência de Bases , Caspase 8 , Caspase 9 , Primers do DNA , Drosophila , Proteínas de Drosophila , Feminino , Masculino , Microscopia Eletrônica de Varredura , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...