Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (208)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39007567

RESUMO

Various nuclear processes, such as transcriptional control, occur within discrete structures known as foci that are discernable through the immunofluorescence technique. Investigating the dynamics of these foci under diverse cellular conditions via microscopy yields valuable insights into the molecular mechanisms governing cellular identity and functions. However, performing immunofluorescence assays across different cell types and assessing alterations in the assembly, diffusion, and distribution of these foci present numerous challenges. These challenges encompass complexities in sample preparation, determination of parameters for analyzing imaging data, and management of substantial data volumes. Moreover, existing imaging workflows are often tailored for proficient users, thereby limiting accessibility to a broader audience. In this study, we introduce an optimized immunofluorescence protocol tailored for investigating nuclear proteins in different human primary T cell types that can be customized for any protein of interest and cell type. Furthermore, we present a method for unbiasedly quantifying protein staining, whether they form distinct foci or exhibit a diffuse nuclear distribution. Our proposed method offers a comprehensive guide, from cellular staining to analysis, leveraging a semi-automated pipeline developed in Jython and executable in Fiji. Furthermore, we provide a user-friendly Python script to streamline data management, publicly accessible on a Google Colab notebook. Our approach has demonstrated efficacy in yielding highly informative immunofluorescence analyses for proteins with diverse patterns of nuclear organization across different contexts.


Assuntos
Imunofluorescência , Humanos , Imunofluorescência/métodos , Núcleo Celular/química , Núcleo Celular/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Linfócitos T/química , Processamento de Imagem Assistida por Computador/métodos
2.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38006015

RESUMO

Objectives: We aimed to analyse the incidence and severity of breakthrough infections (BIs) in rheumatoid arthritis (RA) patients after a COronaVIrus Disease 2019 (COVID-19) vaccination booster dose. Methods: We enrolled 194 RA patients and 1002 healthcare workers (HCWs) as controls. Clinical, lifestyle and demographic factors were collected at the time of the third dose, and immunogenicity analyses were carried out in a subgroup of patients at 4-6 weeks after the third dose. Results: BIs were experienced by 42% patients (82/194) with a median time since the last vaccination of 176 days. Older age (>50 years; aHR 0.38, 95% CI: 0.20-0.74), receiving conventional synthetic disease modifying antirheumatic drugs (csDMARDs) (aHR 0.52, 95%CI: 0.30-0.90) and having a titre of neutralising antibodies >20 (aHR 0.36, 95% CI: 0.12-1.07) were identified as protective factors. Conversely, anti-IL6R treatment and anti-CD20 therapy increased BI probability. BIs were mostly pauci-symptomatic, but the hospitalisation incidence was significantly higher than in HCWs (8.5% vs. 0.19%); the main risk factor was anti-CD20 therapy. Conclusions: Being older than 50 years and receiving csDMARDs were shown to be protective factors for BI, whereas anti-IL6R or anti-CD20 therapy increased the risk. Higher neutralising antibody titres were associated with a lower probability of BI. If confirmed in a larger population, the identification of a protective cut-off would allow a personalised risk-benefit therapeutic management of RA patients.

3.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768929

RESUMO

The genome is no longer deemed as a fixed and inert item but rather as a moldable matter that is continuously evolving and adapting. Within this frame, Transposable Elements (TEs), ubiquitous, mobile, repetitive elements, are considered an alive portion of the genomes to date, whose functions, although long considered "dark", are now coming to light. Here we will review that, besides the detrimental effects that TE mobilization can induce, TEs have shaped genomes in their current form, promoting genome sizing, genomic rearrangements and shuffling of DNA sequences. Although TEs are mostly represented in the genomes by evolutionarily old, short, degenerated, and sedentary fossils, they have been thoroughly co-opted by the hosts as a prolific and original source of regulatory instruments for the control of gene transcription and genome organization in the nuclear space. For these reasons, the deregulation of TE expression and/or activity is implicated in the onset and progression of several diseases. It is likely that we have just revealed the outermost layers of TE functions. Further studies on this portion of the genome are required to unlock novel regulatory functions that could also be exploited for diagnostic and therapeutic approaches.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Elementos de DNA Transponíveis/genética , Tamanho do Genoma , Fases de Leitura , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...