Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(5): e21594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908654

RESUMO

Protein misfolding is a central feature of most neurodegenerative diseases. Molecular chaperones can modulate the toxicity associated with protein misfolding, but it remains elusive which molecular chaperones and co-chaperones interact with specific misfolded proteins. TDP-43 misfolding and inclusion formation are a hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Using yeast and mammalian neuronal cells we find that Hsp90 and its co-chaperone Sti1 have the capacity to alter TDP-43 misfolding, inclusion formation, aggregation, and cellular toxicity. Our data also demonstrate that impaired Hsp90 function sensitizes cells to TDP-43 toxicity and that Sti1 specifically interacts with and strongly modulates TDP-43 toxicity in a dose-dependent manner. Our study thus uncovers a previously unrecognized tie between Hsp90, Sti1, TDP-43 misfolding, and cellular toxicity.


Assuntos
Apoptose , Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/fisiologia , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteinopatias TDP-43/patologia , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas de Choque Térmico HSP90/genética , Células HeLa , Humanos , Corpos de Inclusão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteinopatias TDP-43/etiologia
2.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764283

RESUMO

The Rho guanine nucleotide exchange factor (RGNEF) protein encoded by the ARHGEF28 gene has been implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Biochemical and pathological studies have shown that RGNEF is a component of the hallmark neuronal cytoplasmic inclusions in ALS-affected neurons. Additionally, a heterozygous mutation in ARHGEF28 has been identified in a number of familial ALS (fALS) cases that may give rise to one of two truncated variants of the protein. Little is known about the normal biological function of RGNEF or how it contributes to ALS pathogenesis. To further explore RGNEF biology we have established and characterized a yeast model and characterized RGNEF expression in several mammalian cell lines. We demonstrate that RGNEF is toxic when overexpressed and forms inclusions. We also found that the fALS-associated mutation in ARGHEF28 gives rise to an inclusion-forming and toxic protein. Additionally, through unbiased screening using the split-ubiquitin system, we have identified RGNEF-interacting proteins, including two ALS-associated proteins. Functional characterization of other RGNEF interactors identified in our screen suggest that RGNEF functions as a microtubule regulator. Our findings indicate that RGNEF misfolding and toxicity may cause impairment of the microtubule network and contribute to ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Microtúbulos/genética , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Regulação da Expressão Gênica/genética , Heterozigoto , Humanos , Mamíferos , Mutação , Neurônios/patologia , Ligação Proteica/genética , Ubiquitina/genética , Leveduras/genética
3.
Front Mol Neurosci ; 11: 394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425620

RESUMO

In the past two decades, yeast models have delivered profound insights into basic mechanisms of protein misfolding and the dysfunction of key cellular pathways associated with amyotrophic lateral sclerosis (ALS). Expressing ALS-associated proteins, such as superoxide dismutase (SOD1), TAR DNA binding protein 43 (TDP-43) and Fused in sarcoma (FUS), in yeast recapitulates major hallmarks of ALS pathology, including protein aggregation, mislocalization and cellular toxicity. Results from yeast have consistently been recapitulated in other model systems and even specimens from human patients, thus providing evidence for the power and validity of ALS yeast models. Focusing on impaired ribonucleic acid (RNA) metabolism and protein misfolding and their cytotoxic consequences in ALS, we summarize exemplary discoveries that originated from work in yeast. We also propose previously unexplored experimental strategies to modernize ALS yeast models, which will help to decipher the basic pathomechanisms underlying ALS and thus, possibly contribute to finding a cure.

4.
FEMS Yeast Res ; 18(6)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29905793

RESUMO

Yeast models of neurodegenerative diseases associated with protein misfolding and protein aggregation have given unique insights into the underlying genetic and cellular pathomechanisms. These yeast models recapitulate central aspects of protein misfolding and the ensuing toxicity, such as interference with cellular protein quality control, concentration-dependent formation of insoluble, often amyloid-like aggregates and the associated toxicity. Advanced age is undoubtedly the highest and most common risk factor for most neurodegenerative diseases. Since yeast has served as a superb model to study cellular aspects of aging, we outline strategies to study how aging modulates protein misfolding and its toxicity, thereby opening new avenues to continue the success of yeast as powerful models to study neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Senescência Celular/fisiologia , Modelos Biológicos , Dobramento de Proteína , Saccharomyces cerevisiae/fisiologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Saccharomyces cerevisiae/metabolismo
5.
Traffic ; 18(1): 58-70, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27734565

RESUMO

The palette of fluorescent proteins (FPs) available for live-cell imaging contains proteins that strongly differ in their biophysical properties. FPs cannot be assumed to be equivalent and in certain cases could significantly perturb the behavior of fluorescent reporters. We employed Saccharomyces cerevisiae to comprehensively study the impact of FPs on the toxicity of polyglutamine (polyQ) expansion proteins associated with Huntington's disease. The toxicity of polyQ fusion constructs is highly dependent on the sequences flanking the polyQ repeats. Thus, they represent a powerful tool to study the impact of fluorescent fusion partners. We observed significant differences on polyQ aggregation and toxicity between commonly used FPs. We generated a novel series of vectors with latest yeast-optimized FPs for investigation of Htt toxicity, including a newly optimized blue FP for expression in yeast. Our study highlights the importance of carefully choosing the optimal FPs when designing tagging strategies.


Assuntos
Proteínas Luminescentes/metabolismo , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Doença de Huntington/metabolismo , Fenótipo
6.
Traffic ; 17(6): 689-703, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26939796

RESUMO

Saccharomyces cerevisiae is a well-established model organism to study the mechanisms of longevity. One of the two aging paradigms studied in yeast is termed chronological lifespan (CLS). CLS is defined by the amount of time non-dividing yeast cells can survive at stationary phase. Here, we propose new approaches that allow rapid and efficient quantification of survival rates in aging yeast cultures using either a fluorescent cell counter or microplate imaging. We have generated a software called analysr (Analytical Algorithm for Yeast Survival Rates) that allows automated and highly reproducible analysis of cell survival in aging yeast cultures using fluorescent data. To demonstrate the efficiency of our new experimental tools, we tested the previously characterized ability of caloric restriction to extend lifespan. Interestingly, we found that this process is independent of the expression of three central yeast heat shock proteins (Hsp26, Hsp42, Hsp104). Finally, our new assay is easily adaptable to other types of toxicity studies. Here, we assessed the toxicity of various concentrations of acetic acid, a known contributor of yeast chronological aging. These assays provide researchers with cost-effective, low- and high-content assays that can serve as an efficient complement to the time-consuming colony forming unit assay usually used in CLS studies.


Assuntos
Proliferação de Células , Saccharomyces cerevisiae/crescimento & desenvolvimento , Software , Ácido Acético/toxicidade , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...