Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 358: 124471, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950846

RESUMO

Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter dp < 2.5 µm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome. Our results document the upregulation of aryl hydrocarbon receptor (AhR) and genes associated with xenobiotic metabolism (CYP1A1 and CYP1B1) in response to single exposure of cells to fresh urban aerosols at low fine PM mass concentrations within the classroom. This is evidenced by concentrations of ultrafine particles (UFPs, dp < 0.1 µm), polycyclic aromatic hydrocarbons (PAH), and ratios of black carbon (BC) to organic aerosol (OA). Additionally, an interleukin 18 (IL-18) down-regulation was found during periods of high human occupancy. Despite the observed gene expression dysregulation, no changes were detected in the methylation levels of the promoter regions of these genes, indicating that the altered gene expression is not linked to changes in DNA methylation and suggesting the involvement of another epigenetic mechanism in the gene regulation. Gene expression changes at low exposure doses have been previously reported. Here, we add the possibility that lung epithelial cells, when singly exposed to real environmental concentrations of fine PM that translate into ultra-low doses of treatment, may undergo epigenetic alteration in the expression of genes related to xenobiotic metabolism. Our findings provide a perspective for future indoor air quality regulations. We underscore the potential role of indoor UFPs as carriers of toxic molecules with low-pressure weather conditions, when rainfall and strong winds may favour low levels of fine PM.

2.
Sci Rep ; 13(1): 18616, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903867

RESUMO

Exposures to fine particulate matter (PM[Formula: see text]) have been associated with health impacts, but the understanding of the PM[Formula: see text] concentration-response (PM[Formula: see text]-CR) relationships, especially at low PM[Formula: see text], remains incomplete. Here, we present novel data using a methodology to mimic lung exposure to ambient air (2[Formula: see text] 60 [Formula: see text]g m[Formula: see text]), with minimized sampling artifacts for nanoparticles. A reference model (Air Liquid Interface cultures of human bronchial epithelial cells, BEAS-2B) was used for aerosol exposure. Non-linearities observed in PM[Formula: see text]-CR curves are interpreted as a result of the interplay between the aerosol total oxidative potential (OP[Formula: see text]) and its distribution across particle size (d[Formula: see text]). A d[Formula: see text]-dependent condensation sink (CS) is assessed together with the distribution with d[Formula: see text] of reactive species . Urban ambient aerosol high in OP[Formula: see text], as indicated by the DTT assay, with (possibly copper-containing) nanoparticles, shows higher pro-inflammatory and oxidative responses, this occurring at lower PM[Formula: see text] concentrations (< 5 [Formula: see text]g m[Formula: see text]). Among the implications of this work, there are recommendations for global efforts to go toward the refinement of actual air quality standards with metrics considering the distribution of OP[Formula: see text] with d[Formula: see text] also at relatively low PM[Formula: see text].


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/análise , Tamanho da Partícula , Estresse Oxidativo , Aerossóis , Inflamação/induzido quimicamente , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
3.
Nat Commun ; 13(1): 2401, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504886

RESUMO

Wherever a loose bed of sand is subject to sufficiently strong winds, aeolian dunes form at predictable wavelengths and growth rates. As dunes mature and coarsen, however, their growth trajectories become more idiosyncratic; nonlinear effects, sediment supply, wind variability and geologic constraints become increasingly relevant, resulting in complex and history-dependent dune amalgamations. Here we examine a fundamental question: do aeolian dunes stop growing and, if so, what determines their ultimate size? Earth's major sand seas are populated by giant sand dunes, evolved over tens of thousands of years. We perform a global analysis of the topography of these giant dunes, and their associated atmospheric forcings and geologic constraints, and we perform numerical experiments to gain insight on temporal evolution of dune growth. We find no evidence of a previously proposed limit to dune size by atmospheric boundary layer height. Rather, our findings indicate that dunes may grow indefinitely in principle; but growth depends on morphology, slows with increasing size, and may ultimately be limited by sand supply.

4.
Sci Total Environ ; 719: 134984, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837859

RESUMO

Current shipping activities employ about 3% of the world-delivered energy. Most of this energy is conveyed by diesel engines. In Europe, release of NOx and particulate matter (PM) from shipping is expected to equal the road-transport one by the year 2020. This paper addresses a typical central Mediterranean city-port condition to evaluate the relative contribution of shipping activities to the local air quality. A 3-year long air quality dataset collected at the boundary between the port of Civitavecchia (the major port in central Italy) and the city itself was analyzed to evaluate the long-term, relative contribution of the port and of the city at determining the loads of EU-regulated pollutants (NO2, PM10 and SO2). In addition, black carbon and ultrafine-to-coarse particles data collected along a short-term, intensive campaign were used to assess the port's role at emitting these unregulated pollutants. Cross-analysis of the measurements, allowed to assess which shipping-related activities and port's sectors represent the principal emitters. At the city-port boundary, the annual share of regulated pollutants originating in the port area by shipping and ground movements is of 33% for PM10, 43% for NO2, and 60% for SO2. Analysis of non-regulated pollutants shows the in-port, high polluting potential of some ship categories, in particular those employing low-sulfur but poorly refined oils. These conditions appear to be more often associated with Ro-Ro passenger ships. Piers closest to the Civitavecchia urban settlements are also observed to host the largest emissions. Meteorology and location of the piers with respect to residential areas are confirmed to govern the port's share at impacting the city air quality. Even though air quality thresholds for regulated pollutants are not exceeded in Civitavecchia, constant consideration of an enlarged set of environmental variables should drive actions implemented to mitigate the port's impact onto the nearby city's air quality.

5.
Chemosphere ; 207: 552-564, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29843032

RESUMO

Air pollution and particulate matter are recognised cause of increased disease incidence in exposed population. The toxicological processes underlying air pollution associated effects have been investigated by in vivo and/or in vitro experimentation. The latter is usually performed by exposing cells cultured under submerged condition to particulate matter concentration quite far from environmental exposure expected in humans. Here we report for the first time the feasibility of a direct exposure of air liquid interface cultured cells to environmental concentration of particulate matter. Inflammatory proteins release was analysed in cell medium while differential expression of selected genes was analysed in cells. Significant association of anti-oxidant genes was observed with secondary and aged aerosol, while cytochrome activation with primary and PAHs enriched ultrafine particles. The results obtained clearly show the opportunity to move from the lab bench to the field for properly understanding the toxicological effects also of ultrafine particles on selected in vitro models.


Assuntos
Poluição do Ar/análise , Exposição Ambiental/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...