Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37103864

RESUMO

The problem of water scarcity is already serious and risks becoming dramatic in terms of human health as well as environmental safety. Recovery of freshwater by means of eco-friendly technologies is an urgent matter. Membrane distillation (MD) is an accredited green operation for water purification, but a viable and sustainable solution to the problem needs to be concerned with every step of the process, including managed amounts of materials, membrane fabrication procedures, and cleaning practices. Once it is established that MD technology is sustainable, a good strategy would also be concerned with the choice of managing low amounts of functional materials for membrane manufacturing. These materials are to be rearranged in interfaces so as to generate nanoenvironments wherein local events, conceived to be crucial for the success and sustainability of the separation, can take place without endangering the ecosystem. In this work, discrete and random supramolecular complexes based on smart poly(N-isopropyl acrylamide) (PNIPAM) mixed hydrogels with aliquots of ZrO(O2C-C10H6-CO2) (MIL-140) and graphene have been produced on a polyvinylidene fluoride (PVDF) sublayer and have been proven to enhance the performance of PVDF membranes for MD operations. Two-dimensional materials have been adhered to the membrane surface through combined wet solvent (WS) and layer-by-layer (LbL) spray deposition without requiring further subnanometer-scale size adjustment. The creation of a dual responsive nanoenvironment has enabled the cooperative events needed for water purification. According to the MD's rules, a permanent hydrophobic state of the hydrogels together with a great ability of 2D materials to assist water vapor diffusion through the membranes has been targeted. The chance to switch the density of charge at the membrane-aqueous solution interface has further allowed for the choice of greener and more efficient self-cleaning procedures with a full recovery of the permeation properties of the engineered membranes. The experimental evidence of this work confirms the suitability of the proposed approach to obtain distinct effects on a future production of reusable water from hypersaline streams under somewhat soft working conditions and in full respect to environmental sustainability.

2.
Polymers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683894

RESUMO

In this work, innovative graphene oxide-doped waterproofing bituminous membranes, also called roof bituminous membranes, were prepared and characterized in terms of physicochemical and vapor transport properties. The results showed that the introduction of a small amount of GO increased the mechanical resistance of the doped membranes compared to the native one. Moreover, the addition of the GO leads to a remarkable chemical stability of the membranes when exposed to UV radiation and high temperatures. Furthermore, a decrease in water vapor permeation was observed when GO was present in the membrane matrix compared to native bituminous membranes, demonstrating that an addition of GO can boost the waterproofing properties of these bituminous membranes.

3.
Membranes (Basel) ; 12(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629837

RESUMO

Graphene-coated membranes for membrane distillation have been fabricated by using a wet-filtration approach. Graphene nanoplatelets have been deposited onto PVDF membrane surfaces. Morphology and physicochemical properties have been explored to evaluate the changes in the surface topography and related effects on the membrane performance in water desalination. The membranes have been tested in membrane distillation plants by using mixtures of sodium chloride and humic acid. The multi-scale rough structure of the surface has been envisaged to amplify the wetting and fouling resistance of the graphene-coated membranes so that a better flux and full salt rejection have been achieved in comparison with pristine PVDF. Total salt rejection and an increase of 77% in flux have been observed for coated membrane with optimized graphene content when worked with NaCl 0.6 M (DCMD, ΔT ≈ 24 °C) over a test period of 6 h. The experimental findings suggest these novel graphene-coated membranes as promising materials to develop functional membranes for high-performing water desalination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...