Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36661807

RESUMO

Dyes are considered as one the most important classes of contaminants that threaten the environment and human life. The synergy between the adsorption capacity of chitosan hydrogels and the catalytic properties of the enzyme laccase was exploited to improve the removal of contaminants from a liquid stream. The adsorption capacity of a chitosan hydrogel was tested on three different textile dyes. The effect of pH on the adsorption efficiency was dependent on the dye tested: the removal of methylene blue (MB), a cationic dye, was more effective at alkaline values of pH, whereas bromophenol blue (BPB) and Coomassie brilliant blue (BB), both anionic dyes, were more effectively removed under acid environments. The use of laccase immobilized onto chitosan has significantly improved the efficiency of dye removal, exploiting the synergy between the adsorption capacity of chitosan and the catalytic properties of the enzyme. The simultaneous processes of adsorption and enzymatic degradation improved the dye removal whatever the pH value adopted, making the removal efficiency less dependent from the pH changes. The chitosan used as a support for the immobilization of laccases showed good stability under repeated cycles, demonstrating the feasibility of the method developed for the application in wastewater remediation.

2.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34824160

RESUMO

BACKGROUND: A number of different immune pathways are involved in the effective killing of cancer cells, collectively named as the 'Cancer Immunity Cycle'. Anti-PD-1 checkpoint blockade (CPB) therapy is active on one of these pathways and reinvigorates anticancer T cell immunity, leading to long-term responses in a limited fraction of patients with cancer. We have previously shown that neoantigens-based adenovirus vectored vaccine in combination with anti-PD-1 further expands pre-existing anticancer immunity and elicits novel neoantigen-specific T cells thereby increasing efficacy to 50% of tumor clearance in mice. Here we added a third component to the CPB plus vaccine combination, which is able to modify the suppressive tumor microenvironment by reducing the number of tumor-infiltrating regulatory T cells (Tregs), as strategy for improving the therapeutic efficacy and overcoming resistance. METHODS: The antitumor efficacy of anti-PD-1, neoantigen vaccine and Treg modulating agents, either Bempegaldesleukin (BEMPEG: NKTR-214) or an anti-CTLA-4 mAb with Treg-depleting activity, was investigated in murine tumor models. We evaluated tumor growth in treated animals, neoantigen-specific T cells in tumors, tumor-infiltrating lymphocytes (TILs) and intratumoral Tregs. RESULTS: The addition of BEMPEG or anti-CTLA-4 to the combination of vaccine and anti-PD-1 led to complete eradication of large tumors in nearby 100% of treated animals, in association with expansion and activation of cancer neoantigen-specific T cells and reduction of tumor-infiltrating Tregs. CONCLUSION: These data support the notion that the integrated regulation of three steps of the cancer immunity cycle, including expansion of neoantigen-specific T cells, reversal of the exhausted T cell phenotype together with the reduction of intratumoral Tregs may represent a novel rationally designed drug combination approach to achieve higher cure rates.


Assuntos
Vacinas Anticâncer/imunologia , Expressão Gênica/genética , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Camundongos
3.
Cancer Res ; 80(18): 3972-3982, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690723

RESUMO

Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI. In this study, we developed a neoantigen-based vaccine for the treatment of MSI tumors. Genetic sequences from 320 MSI tumor biopsies and matched healthy tissues in The Cancer Genome Atlas database were analyzed to select shared FSPs. Two hundred nine FSPs were selected and cloned into nonhuman Great Ape Adenoviral and Modified Vaccinia Ankara vectors to generate a viral-vectored vaccine, referred to as Nous-209. Sequencing tumor biopsies of 20 independent patients with MSI colorectal cancer revealed that a median number of 31 FSPs out of the 209 encoded by the vaccine was detected both in DNA and mRNA extracted from each tumor biopsy. A relevant number of peptides encoded by the vaccine were predicted to bind patient HLA haplotypes. Vaccine immunogenicity was demonstrated in mice with potent and broad induction of FSP-specific CD8 and CD4 T-cell responses. Moreover, a vaccine-encoded FSP was processed in vitro by human antigen-presenting cells and was subsequently able to activate human CD8 T cells. Nous-209 is an "off-the-shelf" cancer vaccine encoding many neoantigens shared across sporadic and hereditary MSI tumors. These results indicate that Nous-209 can induce the optimal breadth of immune responses that might achieve clinical benefit to treat and prevent MSI tumors. SIGNIFICANCE: These findings demonstrate the feasibility of an "off-the-shelf" vaccine for treatment and prevention of tumors harboring frameshift mutations and neoantigenic peptides as a result of microsatellite instability.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Neoplasias Colorretais/terapia , Imunogenicidade da Vacina/imunologia , Instabilidade de Microssatélites , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Feminino , Mutação da Fase de Leitura , Humanos , Camundongos , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/imunologia
4.
Nat Commun ; 10(1): 2688, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217437

RESUMO

Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens. Prophylactic or early therapeutic vaccination with GAd efficiently control tumor growth in mice. In contrast, combination of the vaccine with checkpoint inhibitors is required to eradicate large tumors. Gene expression profile of tumors in regression shows abundance of activated tumor infiltrating T cells with a more diversified TCR repertoire in animals treated with GAd and anti-PD1 compared to anti-PD1. Data suggest that effectiveness of vaccination in the presence of high tumor burden correlates with the breadth of nAgs-specific T cells and requires concomitant reversal of tumor suppression by checkpoint blockade.


Assuntos
Adenoviridae/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias/terapia , Vacinas Virais/uso terapêutico , Adenoviridae/genética , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/transplante , Terapia Combinada/métodos , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...