Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338656

RESUMO

Amyloid beta 1-42 (Aß42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17ß-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17ß-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aß42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aß42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aß42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aß42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aß42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.


Assuntos
Estradiol , Potenciação de Longa Duração , Ratos , Animais , Estradiol/farmacologia , Estradiol/metabolismo , Peptídeos beta-Amiloides/metabolismo , Memantina/farmacologia , Hipocampo/metabolismo , Glutamatos/metabolismo
2.
Front Cell Neurosci ; 13: 534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866827

RESUMO

Neuroactive estrogenic and androgenic steroids influence synaptic transmission, finely modulating synaptic plasticity in several brain regions including the hippocampus. While estrogens facilitate long-term potentiation (LTP), androgens are involved in the induction of long-term depression (LTD) and depotentiation (DP) of synaptic transmission. To examine sex neurosteroid-dependent LTP and LTD in single cells, patch-clamp recordings from hippocampal CA1 pyramidal neurons of male rats and selective antagonists for estrogen receptors (ERs) and androgen (AR) receptors were used. LTP induced by high-frequency stimulation (HFS) depended on activation of ERs since it was prevented by the ER antagonist ICI 182,780 in most of the neurons. Application of the selective antagonists for ERα (MPP) or ERß (PHTPP) caused a reduction of the LTP amplitude, while these antagonists in combination, prevented LTP completely. LTP was never affected by blocking AR with the specific antagonist flutamide. Conversely, LTD and DP, elicited by low-frequency stimulation (LFS), were impeded by flutamide, but not by ICI 182,780, in most neurons. In few cells, LTD was even reverted to LTP by flutamide. Moreover, the combined application of both ER and AR antagonists completely prevented both LTP and LTD/DP in the same neuron. The current study demonstrates that the activation of ERs is necessary for inducing LTP in hippocampal pyramidal neurons, whereas the activation of ARs is required for LTD and DP. Moreover, both estrogen- and androgen-dependent LTP and LTD can be expressed in the same pyramidal neurons, suggesting that the activation of sex neurosteroids signaling pathways is responsible for bidirectional synaptic plasticity.

3.
Eur J Neurosci ; 45(4): 499-509, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27801959

RESUMO

Electrophysiological recordings were used to investigate the role of the local synthesis of 17ß-estradiol (E2) and 5α-dihydrotestosterone (DHT) on synaptic long-term effects induced in the hippocampal CA1 region of male rat slices. Long-term depression (LTD) and long-term potentiation (LTP), induced by different stimulation patterns, were examined under the block of the DHT synthesis by finasteride (FIN), and the E2 synthesis by letrozole (LET). We used low frequency stimulation (LFS) for LTD, high frequency stimulation (HFS) for LTP, and intermediate patterns differing in duration or frequency. We found that FIN reverted the LFS-LTD into LTP and enhanced LTP induced by intermediate and HFSs. These effects were abolished by exogenous DHT at concentration higher than the basal one, suggesting a stimulus dependent increase in DHT availability. No effect on the synaptic responses was observed giving DHT alone. Moreover, we found that the inhibition of E2 synthesis influenced the HFS-LTP by reducing its amplitude, and the exogenous E2 either enhanced HFS-LTP or reverted the LFS-LTD into LTP. The equivalence of the E2 concentration for rescuing the full HFS-LTP under LET and reverting the LFS-LTD into LTP suggests an enhancement of the endogenous E2 availability that is specifically driven by the HFS. No effect of FIN or LET was observed on the responses to stimuli that did not induce either LTD or LTP. This study provides evidence that the E2 and DHT availability combined with specific stimulation patterns is determinant for the sign and amplitude of the long-term effects.


Assuntos
Estradiol/metabolismo , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Testosterona/análogos & derivados , Inibidores de 5-alfa Redutase/farmacologia , Animais , Inibidores da Aromatase/farmacologia , Estradiol/farmacologia , Finasterida/farmacologia , Hipocampo/fisiologia , Letrozol , Masculino , Nitrilas/farmacologia , Ratos , Ratos Wistar , Potenciais Sinápticos , Testosterona/metabolismo , Testosterona/farmacologia , Triazóis/farmacologia
4.
Front Cell Neurosci ; 9: 376, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483631

RESUMO

Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17ß-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.

5.
Front Cell Neurosci ; 9: 192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074768

RESUMO

17ß-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

6.
Cerebellum ; 12(3): 350-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23096094

RESUMO

The effects of noradrenaline (NA) on inhibitory responses to gamma aminobutyric acid (GABA) in neurones of the deep cerebellar nuclei were studied in vivo in rats, using extracellular single-unit recordings and microiontophoretic drug application. NA application altered GABA-evoked responses in 95 % of the neurones tested, but the effects differed between nuclei. Application of NA depressed GABA responses in the medial (MN) and posterior interpositus (PIN) nuclei, but enhanced GABA responses in the anterior interpositus nucleus (AIN). Comparable proportions of enhancing (57 %) and depressive (43 %) effects were found in the lateral nucleus (LN). The alpha2 noradrenergic receptor agonist clonidine mimicked the depressive effect of NA on GABA responses in MN and PIN and its enhancing effects in AIN and LN, while the alpha2 antagonist yohimbine partially blocked these effects. The beta-adrenergic agonist isoproterenol and antagonist timolol respectively induced and partially blocked enhancements of GABA responses in all nuclei except for LN, where isoproterenol had a weak depressive effect. It is concluded that NA modulates GABA responses by acting on both alpha2 and beta receptors. Activation of these receptors appears to be synergistic in the AIN and opposite in the remaining deep nuclei. These results support the hypothesis that the noradrenergic system participates in all the regulatory functions involving the cerebellum in a specific and differential manner, and suggest that any change in NA content, as commonly observed in ageing or stress, could influence cerebellar activity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Carbolinas/farmacologia , Núcleos Cerebelares/citologia , Neurônios/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Adrenérgicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Iontoforese , Inibição Neural/efeitos dos fármacos , Ratos , Ratos Wistar , Estatísticas não Paramétricas
7.
Physiol Rep ; 1(7): e00185, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24744863

RESUMO

Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long-term depression (LTD) and depotentiation (DP) by low-frequency stimulation (LFS) and long-term potentiation (LTP) by high-frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS-dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N-methyl-d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired-pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity-dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively.

8.
Neurosci Lett ; 347(2): 101-5, 2003 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12873738

RESUMO

The firing rate of single cerebellar nuclear neurons was studied during microiontophoretic application of noradrenaline (NA), 5-hydroxytryptamine (5-HT) and their agonists in deeply anesthetized rats. NA application depressed the neuronal firing rate more in the medial nucleus (MN) than in the interpositus (IN) and in the lateral nucleus (LN). These responses were mimicked by alpha(2) and, to a lesser extent, beta receptor agonists. 5-HT evoked inhibition in MN and various effects (inhibitory, excitatory, biphasic) in IN and LN. Excitatory responses were more numerous in the posterior than in the anterior zone of IN. Agonists at 5-HT(1A) and 5-HT(2) receptors mimicked inhibition only. In conclusion, NA and 5-HT exerted a similar action on MN neurons; in contrast, the effects of 5-HT on IN and LN were more differentiated than those exerted by NA.


Assuntos
Núcleos Cerebelares/efeitos dos fármacos , Neurônios/fisiologia , Norepinefrina/farmacologia , Serotonina/farmacologia , Potenciais de Ação , Animais , Núcleos Cerebelares/metabolismo , Núcleos Cerebelares/fisiologia , Iontoforese , Microeletrodos , Norepinefrina/administração & dosagem , Norepinefrina/metabolismo , Ratos , Ratos Wistar , Serotonina/administração & dosagem , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...