Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(9): 091803, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302807

RESUMO

We report the measurement of sub-MeV solar neutrinos through the use of their associated Cherenkov radiation, performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The measurement is achieved using a novel technique that correlates individual photon hits of events to the known position of the Sun. In an energy window between 0.54 to 0.74 MeV, selected using the dominant scintillation light, we have measured 10 887_{-2103}^{+2386}(stat)±947(syst) (68% confidence interval) solar neutrinos out of 19 904 total events. This corresponds to a ^{7}Be neutrino interaction rate of 51.6_{-12.5}^{+13.9} counts/(day·100 ton), which is in agreement with the standard solar model predictions and the previous spectroscopic results of Borexino. The no-neutrino hypothesis can be excluded with >5σ confidence level. For the first time, we have demonstrated the possibility of utilizing the directional Cherenkov information for sub-MeV solar neutrinos, in a large-scale, high light yield liquid scintillator detector. This measurement provides an experimental proof of principle for future hybrid event reconstruction using both Cherenkov and scintillation signatures simultaneously.

2.
Phys Rev Lett ; 129(25): 252701, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608219

RESUMO

We present an improved measurement of the carbon-nitrogen-oxygen (CNO) solar neutrino interaction rate at Earth obtained with the complete Borexino Phase-III dataset. The measured rate, R_{CNO}=6.7_{-0.8}^{+2.0} counts/(day×100 tonnes), allows us to exclude the absence of the CNO signal with about 7σ C.L. The correspondent CNO neutrino flux is 6.6_{-0.9}^{+2.0}×10^{8} cm^{-2} s^{-1}, taking into account the neutrino flavor conversion. We use the new CNO measurement to evaluate the C and N abundances in the Sun with respect to the H abundance for the first time with solar neutrinos. Our result of N_{CN}=(5.78_{-1.00}^{+1.86})×10^{-4} displays a ∼2σ tension with the "low-metallicity" spectroscopic photospheric measurements. Furthermore, our result used together with the ^{7}Be and ^{8}B solar neutrino fluxes, also measured by Borexino, permits us to disfavor at 3.1σ C.L. the "low-metallicity" standard solar model B16-AGSS09met as an alternative to the "high-metallicity" standard solar model B16-GS98.

3.
Philos Trans A Math Phys Eng Sci ; 376(2116)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29459413

RESUMO

The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n=1-3 and n=3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of [Formula: see text], radial compression to sub-millimetre radii of mixed [Formula: see text] plasmas in 1 T field, high-efficiency transfer of [Formula: see text] to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

4.
Phys Rev Lett ; 115(23): 231802, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684111

RESUMO

Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single monoenergetic photon was obtained. This new bound, τ≥6.6×10^{28} yr at 90% C.L., is 2 orders of magnitude better than the previous limit.

5.
Nat Commun ; 5: 4538, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25066810

RESUMO

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics--the moiré deflectometer--for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.

7.
Mol Cell Biol Res Commun ; 2(1): 71-6, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10527895

RESUMO

The neuronal proteins Tau and MAP2 use homologous C-terminal MT-binding regions (MTBRs) to interact with microtubules, F-actin, and intermediate filaments. Although Tau-MTBR is the principal component of pronase-treated Alzheimer paired helical filaments, both Tau and MAP2 form filaments in vitro from disulfide-linked homodimers. That the critical thiol lies within a domain needed for MT binding raised the question: Does disulfide formation block Tau-Tau or MAP2-MAP2 dimer binding to microtubules, thereby acting to divert dimers toward filament formation? We now report that cross-linked Tau and MAP2 homodimers readily promote tubulin polymerization and that monomer and dimer affinity for MTs is surprisingly similar. Therefore, disulfide cross-bridging into homodimers is unlikely to be a drive force for filament formation in Alzheimer's disease.


Assuntos
Dissulfetos/química , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Proteínas tau/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Dimerização , Eletroforese em Gel de Poliacrilamida , Humanos , Microscopia Eletrônica , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...