Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Onco Targets Ther ; 15: 1273-1280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275185

RESUMO

The Fallopian tube epithelium harbors the origin cells for the majority of high-grade serous ovarian carcinomas (HGSCs), the most lethal form of gynecologic malignancies. PAX8 belongs to the paired-box gene family of transcription factors and it is a marker of the FTE secretory cell lineage. Its role has been investigated in migration, invasion, proliferation, cell survival, stem cell maintenance, angiogenesis and tumor growth. In this review, we focus on the pro-tumorigenic role of PAX8 in ovarian cancer; in this context, PAX8 possibly continues to exert its transcriptional activity on its physiological targets but may also function on newly available targets after the tumorigenic hits. Acquiring new insights into the different PAX8 mechanism(s) of action in the tumor microenvironment could uncover new viable therapeutic targets and thus improve the current treatment regimen.

2.
Adv Exp Med Biol ; 1330: 95-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339032

RESUMO

Ovarian Cancer is one of the most lethal and widespread gynecological malignancies. It is the seventh leading cause of all cancer deaths worldwide. High-Grade Serous Cancer (HGSC), the most commonly occurring subtype, alone contributes to 70% of all ovarian cancer deaths. This is mainly attributed to the complete lack of symptoms during the early stages of the disease and absence of an early diagnostic marker.PAX8 is emerging as an important histological marker for most of the epithelial ovarian cancers, as it is expressed in about 90% of malignant ovarian cancers, specifically in HGSC. PAX8 is a member of the Paired-Box gene family (PAX1-9) of transcription factors whose expression is tightly controlled temporally and spatially. The PAX genes are well known for their role in embryonic development and their expression continues to persist in some adult tissues. PAX8 is required for the normal development of Müllerian duct that includes Fallopian tube, uterus, cervix, and upper part of vagina. In adults, it is expressed in the Fallopian tube and uterine epithelium and not in the ovarian epithelium. Considering the recent studies that predict the events preceding the tumorigenesis of HGSC from the Fallopian tube, PAX8 appears to have an important role in the development of ovarian cancer.In this chapter, we review some of the published findings to highlight the significance of PAX8 as an important marker and an emerging player in the pathogenesis of ovarian cancer. We also discuss regarding the future perspectives of PAX8 wherein it could contribute to the betterment of ovarian cancer diagnosis and treatment.


Assuntos
Neoplasias Ovarianas , Adulto , Carcinoma Epitelial do Ovário , Tubas Uterinas , Feminino , Humanos , Gradação de Tumores , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Fator de Transcrição PAX8/genética
3.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517089

RESUMO

Long non-coding RNAs (lncRNAs) are increasingly being identified as crucial regulators in pathologies like cancer. High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer (OC), one of the most lethal gynecological malignancies. LncRNAs, especially in cancers such as HGSC, could play a valuable role in diagnosis and even therapy. From RNA-sequencing analysis performed between an OC cell line, SKOV3, and a Fallopian Tube (FT) cell line, FT194, an important long non-coding RNA, HAND2 Anti sense RNA 1 (HAND2-AS1), was observed to be significantly downregulated in OCs when compared to FT. Its downregulation in HGSC was validated in different datasets and in a panel of HGSC cell lines. Furthermore, this study shows that the downregulation of HAND2-AS1 is caused by promoter hypermethylation in HGSC and behaves as a tumor suppressor in HGSC cell lines. Since therapeutic relevance is of key importance in HGSC research, for the first time, HAND2-AS1 upregulation was demonstrated to be one of the mechanisms through which HDAC inhibitor Panobinostat could be used in a strategy to increase HGSC cells' sensitivity to chemotherapeutic agents currently used in clinical trials. To unravel the mechanism by which HAND2-AS1 exerts its role, an in silico mRNA network was constructed using mRNAs whose expressions were positively and negatively correlated with this lncRNA in HGSC. Finally, a putative ceRNA network with possible miRNA targets of HAND2-AS1 and their mRNA targets was constructed, and the enriched Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified.


Assuntos
Cistadenocarcinoma Seroso/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias Ovarianas/genética , Interferência de RNA , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Cistadenocarcinoma Seroso/patologia , Metilação de DNA , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , MicroRNAs/genética , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas
4.
Cancer Cell Int ; 19: 303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31832016

RESUMO

BACKGROUND: Ovarian cancer is the third most common cause of death among gynecologic malignancies worldwide. Understanding the biology and molecular pathogenesis of ovarian epithelial tumors is key to developing improved prognostic indicators and effective therapies. We aimed to determine the effects of PAX8 expression on the migrative, adhesive and survival capabilities of high-grade serous carcinoma cells. METHODS: PAX8 depleted Fallopian tube secretory cells and ovarian cancer cells were generated using short interfering siRNA. Anoikis resistance, cell migration and adhesion properties of PAX8 silenced cells were analyzed by means of specific assays. Chromatin immunoprecipitation (ChIP) was carried out using a PAX8 polyclonal antibody to demonstrate that PAX8 is able to bind to the 5'-flanking region of the ITGB3 gene positively regulating its expression. RESULTS: Here, we report that RNAi silencing of PAX8 sensitizes non-adherent cancer cells to anoikis and affects their tumorigenic properties. We show that PAX8 plays a critical role in migration and adhesion of both Fallopian tube secretory epithelial cells and ovarian cancer cells. Inhibition of PAX8 gene expression reduces the ability of ovarian cancer cells to migrate and adhere to the ECM and specifically to fibronectin and/or collagen substrates. Moreover, loss of PAX8 strongly reduces ITGB3 expression and consequently the correct expression of the αvß3 heterodimer on the plasma membrane. CONCLUSIONS: Our results demonstrate that PAX8 modulates the interaction of tumor cells with the extracellular matrix (ECM). Notably, we also highlight a novel pathway downstream this transcription factor. Overall, PAX8 could be a potential therapeutic target for high-grade serous carcinoma.

5.
Cancers (Basel) ; 11(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842477

RESUMO

High-Grade Serous Ovarian Carcinoma (HGSC) is the most incidental and lethal subtype of epithelial ovarian cancer (EOC) with a high mortality rate of nearly 65%. Recent findings aimed at understanding the pathogenesis of HGSC have attributed its principal source as the Fallopian Tube (FT). To further comprehend the exact mechanism of carcinogenesis, which is still less known, we performed a transcriptome analysis comparing FT and HGSC. Our study aims at exploring new players involved in the development of HGSC from FT, along with their signaling network, and we chose to focus on non-coding RNAs. Non-coding RNAs (ncRNAs) are increasingly observed to be the major regulators of several cellular processes and could have key functions as biological markers, as well as even a therapeutic approach. The most physiologically relevant and significantly dysregulated non-coding RNAs were identified bioinformatically. After analyzing the trend in HGSC and other cancers, MAGI2-AS3 was observed to be an important player in EOC. We assessed its tumor-suppressive role in EOC by means of various assays. Further, we mapped its signaling pathway using its role as a miRNA sponge to predict the miRNAs binding to MAGI2AS3 and showed it experimentally. We conclude that MAGI2-AS3 acts as a tumor suppressor in EOC, specifically in HGSC by sponging miR-15-5p, miR-374a-5p and miR-374b-5p, and altering downstream signaling of certain mRNAs through a ceRNA network.

6.
Oncotarget ; 7(27): 41929-41947, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27259239

RESUMO

Understanding the biology and molecular pathogenesis of ovarian epithelial cancer (EOC) is key to developing improved diagnostic and prognostic indicators and effective therapies. Although research has traditionally focused on the hypothesis that high-grade serous carcinoma (HGSC) arises from the ovarian surface epithelium (OSE), recent studies suggest that additional sites of origin exist and a substantial proportion of cases may arise from precursor lesions located in the Fallopian tubal epithelium (FTE). In FTE cells, the transcription factor PAX8 is a marker of the secretory cell lineage and its expression is retained in 96% of EOC. We have recently reported that PAX8 is involved in the tumorigenic phenotype of ovarian cancer cells. In this study, to uncover genes and pathways downstream of PAX8 involved in ovarian carcinoma we have determined the molecular profiles of ovarian cancer cells and in parallel of Fallopian tube epithelial cells by means of a silencing approach followed by an RNA-seq analysis. Interestingly, we highlighted the involvement of pathways like WNT signaling, epithelial-mesenchymal transition, p53 and apoptosis. We believe that our analysis has led to the identification of candidate genes and pathways regulated by PAX8 that could be additional targets for the therapy of ovarian carcinoma.


Assuntos
Células Epiteliais/metabolismo , Predisposição Genética para Doença/genética , Fator de Transcrição PAX8/genética , Transdução de Sinais/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Tubas Uterinas/citologia , Tubas Uterinas/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX8/metabolismo , Interferência de RNA
7.
PLoS One ; 10(6): e0128315, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030152

RESUMO

PAX8 is a transcription factor essential for thyroid gland development, as well as for the maintenance of the thyroid differentiated state in the adult. In particular, PAX8 has been comprehensively shown to regulate genes that are considered markers of thyroid differentiation. However, a better knowledge of genes transcriptionally regulated by PAX8 is desirable to clarify its role in endocrine syndromes and cancer susceptibility. In order to further investigate PAX8 downstream targets, we recently performed a genome-wide expression analysis following PAX8 knockdown in FRTL-5 thyroid cells and Neuropilin-2 was identified as a potential transcriptional target of PAX8. In this study, we determined the role of the transcription factor PAX8 in the regulation of Neuropilin-2 expression. Indeed, in thyroid cells PAX8 directly binds the Neuropilin-2 promoter leading to its transcriptional repression. Interestingly, we observed an inverse correlation between the expression of PAX8 and Neuropilin-2 in thyroid carcinoma tissues and cell lines compared to non-tumor counterparts, suggesting a critical role of PAX8 in regulating Neuropilin-2 expression in vivo. Notably, ectopic overexpression of PAX8 in FB-2 thyroid cancer cells promotes Neuropilin-2 downregulation producing a significant reduction in cell proliferation, migration ability, and invasion activity and reverting the cell phenotype from mesenchymal to a more epithelial one. These findings uncover the novel interplay between PAX8 and Neuropilin-2, which is likely to be important in the pathogenesis of thyroid diseases.


Assuntos
Neuropilina-2/genética , Fatores de Transcrição Box Pareados/metabolismo , Glândula Tireoide/citologia , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Regulação para Baixo , Transição Epitelial-Mesenquimal , Humanos , Invasividade Neoplásica , Fator de Transcrição PAX8 , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ratos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
8.
BMC Mol Biol ; 15: 21, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25270402

RESUMO

BACKGROUND: The transcription factor Pax8 is expressed during thyroid development and is involved in the morphogenesis of the thyroid gland and maintenance of the differentiated phenotype. In particular, Pax8 has been shown to regulate genes that are considered markers of thyroid differentiation. Recently, the analysis of the gene expression profile of FRTL-5 differentiated thyroid cells after the silencing of Pax8 identified Wnt4 as a novel target. Like the other members of the Wnt family, Wnt4 has been implicated in several developmental processes including regulation of cell fate and patterning during embryogenesis. To date, the only evidence on Wnt4 in thyroid concerns its down-regulation necessary for the progression of thyroid epithelial tumors. RESULTS: Here we demonstrate that Pax8 is involved in the transcriptional modulation of Wnt4 gene expression directly binding to its 5'-flanking region, and that Wnt4 expression in FRTL-5 cells is TSH-dependent. Interestingly, we also show that in thyroid cells a reduced expression of Wnt4 correlates with the alteration of the epithelial phenotype and that the overexpression of Wnt4 in thyroid cancer cells is able to inhibit cellular migration. CONCLUSIONS: We have identified and characterized a functional Pax8 binding site in the 5'-flanking region of the Wnt4 gene and we show that Pax8 modulates the expression of Wnt4 in thyroid cells. Taken together, our results suggest that in thyroid cells Wnt4 expression correlates with the integrity of the epithelial phenotype and is reduced when this integrity is perturbed. In the end, we would like to suggest that the overexpression of Wnt4 in thyroid cancer cells is able to revert the mesenchymal phenotype.


Assuntos
Fatores de Transcrição Box Pareados/metabolismo , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Proteína Wnt4/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/genética , Fenótipo , Regiões Promotoras Genéticas , Ratos , Glândula Tireoide/citologia , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Tireotropina/metabolismo , Proteína Wnt4/metabolismo
9.
BMC Cancer ; 14: 292, 2014 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-24766781

RESUMO

BACKGROUND: PAX8 is a member of the paired box (Pax) multigene family of transcription factors, which are involved in the developmental and tissue-specific control of the expression of several genes in both vertebrates and invertebrates. Previously, several studies reported that PAX8 is expressed at high levels in specific types of tumors. In particular, PAX8 has been recently reported to be conspicuously expressed in human ovarian cancer, but the functional role of PAX8 in the carcinogenesis of this type of tumor has not been addressed. In this study, we investigated the contribution of PAX8 in ovarian cancer progression. METHODS: Stable PAX8 depleted ovarian cancer cells were generated using short hairpin RNA (shRNA) constructs. PAX8 mRNA and protein were detected by RT-PCR, immunoblot and immunofluorescence. Cell proliferation, motility and invasion potential of PAX8 silenced cells were analyzed by means of growth curves, wound healing and Matrigel assays. In addition, PAX8 knockdown and control cells were injected into nude mice for xenograft tumorigenicity assays. Finally, qPCR was used to detect the expression levels of EMT markers in PAX8-overexpressing and control cells. RESULTS: Here, we show that PAX8 plays a critical role in the migration, invasion and tumorigenic ability of ovarian cancer cells. Our results show that RNA interference-mediated knockdown of PAX8 expression in SKOV-3 ovarian cancer cells produces a significant reduction of cell proliferation, migration ability and invasion activity compared with control parental SKOV-3 cells. Moreover, PAX8 silencing strongly suppresses anchorage-independent growth in vitro. Notably, tumorigenesis in vivo in a nude mouse xenograft model is also significantly inhibited. CONCLUSIONS: Overall, our results indicate that PAX8 plays an important role in the tumorigenic phenotype of ovarian cancer cells and identifies PAX8 as a potential new target for the treatment of ovarian cancer.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Ovarianas/genética , Fatores de Transcrição Box Pareados/biossíntese , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Gene ; 529(2): 300-6, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23911299

RESUMO

BACKGROUND: TAZ (Transcriptional co-Activator with PDZ-binding motif), is a biologically potent transcriptional coactivator and functions by binding to the PPXY motif present in several transcription factors. Notably, TAZ behaves as a transducer linking cytoplasmic signaling events to transcriptional regulation in the nucleus. Several different factors regulate TAZ expression and/or function. In particular, a major regulation of TAZ activity occurs through the Hippo pathway by a phosphorylation-mediated mechanism that causes its cytoplasmic sequestration or degradation. RESULTS: Here we demonstrate that AMOTL2 robustly co-immunoprecipitates with TAZ, and their interaction is dependent on the WW domain of TAZ and the PPXY motif in the N-terminus of AMOTL2. Furthermore, we show that AMOTL2 colocalizes with TAZ in the cytoplasm of H441 human lung cells and regulates TAZ cytoplasm-to-nucleus translocation through direct protein-protein interaction. Interestingly, the overexpression of AMOTL2 inhibits the functional cooperation between the transcription factor TTF-1 and TAZ on the Surfactant C gene promoter, as well as the expression of other known target genes of these regulatory factors. CONCLUSIONS: Taken together, our results suggest an inhibitory role of AMOTL2 on TAZ ability to co-activate transcription and describe a different mechanism, Hippo pathway-independent, that modulates the activity of TAZ in lung cells through the interaction with Angiomotin-like 2 (AMOTL2).


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Angiomotinas , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Pulmão/citologia , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína C Associada a Surfactante Pulmonar/genética , Fator Nuclear 1 de Tireoide , Transativadores , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
11.
Mol Endocrinol ; 26(1): 67-78, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22135066

RESUMO

Cadherin-16 was originally identified as a tissue-specific cadherin present exclusively in kidney. Only recently, Cadherin-16 has been detected also on the plasma membrane of mouse thyrocytes. This last finding prompted us to note that the expression profile of Cadherin-16 resembles that of the transcription factor Pax8, a member of the Pax (paired-box) gene family, predominantly expressed in the developing and adult kidney and thyroid. Pax8 has been extensively characterized in the thyroid and shown to be a master gene for thyroid development and differentiation. In this study, we determined the role of the transcription factor Pax8 in the regulation of Cadherin-16 expression. We demonstrate that the Cadherin-16 minimal promoter is transcriptionally active in thyroid cells as well as in kidney cells, that Pax8 is able to activate transcription from a Cadherin-16 promoter reporter construct, and more importantly, that indeed Pax8 is able to bind in vivo the Cadherin-16 promoter region. In addition, by means of Pax8 RNA interference in thyroid cells and by analyzing Pax8 null mice, we demonstrate that Pax8 regulates also in vivo the expression of Cadherin-16. Finally, we reveal that the expression of Cadherin-16 is TSH dependent in FRTL-5 thyroid cells and significantly reduced in mouse thyroid carcinomas. Therefore, we conclude that Cadherin-16 is a novel downstream target of the transcription factor Pax8, likely since the early steps of thyroid development, and that its expression is associated with the fully differentiated state of the thyroid cell.


Assuntos
Caderinas/genética , Fatores de Transcrição Box Pareados/metabolismo , Glândula Tireoide/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Caderinas/metabolismo , Células Cultivadas , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX8 , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Ratos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Tireotropina/metabolismo , Ativação Transcricional
12.
PLoS One ; 6(9): e25162, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966443

RESUMO

BACKGROUND: The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation. CONCLUSIONS/SIGNIFICANCE: This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies.


Assuntos
Inativação Gênica/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição Box Pareados/metabolismo , Glândula Tireoide/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/genética , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Eur J Cancer ; 47(6): 926-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21131195

RESUMO

In this study, we analysed the expression of the transcriptional coactivator TAZ (transcriptional co-activator with PDZ-binding motif), also named WWTR1, in a panel of papillary thyroid carcinoma samples and we observed a significant deregulation of its expression in such tumours. Specifically, by quantitative real-time PCR (qRT-PCR) we evaluated TAZ mRNA levels in tissue specimens (n=61) of papillary thyroid carcinoma (PTC) and herein we show that the PTC samples express much higher TAZ mRNA levels with respect to the normal thyroid tissue (p<0.001). TAZ expression was also evaluated in normal (n=10) and pathological human thyroids (n=17) by immunohistochemical analysis and the increase of TAZ protein levels in PTC was confirmed. To further analyse the molecular mechanisms underlying TAZ overexpression in PTC, we used an inducible system consisting of FRTL-5 rat thyroid cells expressing a conditional RAS oncoprotein and we show that the activation of the RAS signalling pathway is involved in TAZ deregulation. These observations suggest that the activated effectors of the RAS/RAF/MEK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) signalling pathway are involved in the increased expression of TAZ, supporting the idea that this may also occur in thyroid papillary carcinoma. Moreover, we demonstrated that the overexpression of TAZ is able to confer growth advantage to thyroid cells in culture and to induce epithelial-mesenchymal transition. In conclusion, these findings support a potential role for TAZ in the pathogenesis of papillary thyroid carcinomas.


Assuntos
Carcinoma Papilar/etiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias da Glândula Tireoide/etiologia , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Carcinoma , Carcinoma Papilar/metabolismo , Divisão Celular , Transformação Celular Neoplásica , Humanos , Coativadores de Receptor Nuclear/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/metabolismo , Transativadores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Células Tumorais Cultivadas
14.
Clin Endocrinol (Oxf) ; 73(6): 808-14, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20718765

RESUMO

BACKGROUND: Congenital hypothyroidism (CH) is a common endocrine disease that occurs in about 1:3000 newborns. In 80-85% of the cases, CH is presumably secondary to thyroid dysgenesis (TD), a defect in the organogenesis of the gland leading to an ectopic (30-45%), absent (agenesis, 35-40%) or hypoplastic (5%) thyroid gland. The pathogenesis of TD is still largely unknown. Most cases of TD are sporadic, although familial occurrences have occasionally been described. Recently, mutations in the PAX8 transcription factor have been identified in patients with TD. OBJECTIVE: Our aim was to identify and functionally characterize novel PAX8 mutations with autosomal dominant transmission responsible for TD. DESIGN: The PAX8 gene was sequenced in a mother and child both suffering from congenital hypothyroidism (CH) because of thyroid hypoplasia. Subsequently, expression vectors encoding the mutated PAX8 were generated, and the effects of the mutation on both the DNA-binding capability and the transcriptional activity were evaluated. RESULTS: PAX8 gene sequencing revealed a heterozygous mutation that consists of the substitution of a histidine residue with a glutamine at position 55 of the PAX8 protein (H55Q). When tested in cotransfection experiments with a thyroglobulin promoter reporter construct, the mutant protein turned out to be still able to bind DNA in Electrophoretic Mobility Shift Assay assays but transcriptionally inactive. CONCLUSIONS: Our findings confirm the important role of PAX8 in normal thyroid development and support the evidence that in humans haploinsufficiency of PAX8 is associated with TD.


Assuntos
Hipotireoidismo Congênito/genética , Fatores de Transcrição Box Pareados/genética , Adulto , Western Blotting , Feminino , Células HeLa , Humanos , Recém-Nascido , Masculino , Mutação , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/metabolismo , Adulto Jovem
15.
Endocrinology ; 151(4): 1948-58, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20160132

RESUMO

We report here the mapping of a chromosomal region responsible for strain-specific development of congenital hypothyroidism in mice heterozygous for null mutations in genes encoding Nkx2-1/Titf1 and Pax8. The two strains showing a differential predisposition to congenital hypothyroidism contain several single-nucleotide polymorphisms in this locus, one of which leads to a nonsynonymous amino acid change in a highly conserved region of Dnajc17, a member of the type III heat-shock protein-40 (Hsp40) family. We demonstrate that Dnajc17 is highly expressed in the thyroid bud and had an essential function in development, suggesting an important role of this protein in organogenesis and/or function of the thyroid gland.


Assuntos
Hipotireoidismo Congênito/genética , Predisposição Genética para Doença/genética , Proteínas de Choque Térmico HSP40/genética , Glândula Tireoide/anormalidades , Animais , Western Blotting , Células Cultivadas , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Hipotireoidismo Congênito/metabolismo , Estudos de Associação Genética , Proteínas de Choque Térmico HSP40/metabolismo , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândula Tireoide/metabolismo , Tireotropina/sangue
16.
Exp Cell Res ; 315(2): 162-75, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19010321

RESUMO

Pax8 and TTF-1 are transcription factors involved in the morphogenesis of the thyroid gland and in the transcriptional regulation of thyroid-specific genes. Both proteins are expressed in few tissues but their simultaneous presence occurs only in the thyroid where they interact physically and functionally allowing the regulation of genes that are markers of the thyroid differentiated phenotype. TAZ is a transcriptional coactivator that regulates the activity of several transcription factors therefore playing a central role in tissue-specific transcription. The recently demonstrated physical and functional interaction between TAZ and TTF-1 in the lung raised the question of whether TAZ could be an important regulatory molecule also in the thyroid. In this study, we demonstrate the presence of TAZ in thyroid cells and the existence of an important cooperation between TAZ and the transcription factors Pax8 and TTF-1 in the modulation of thyroid gene expression. In addition, we reveal that the three proteins are co-expressed in the nucleus of differentiated thyroid cells and that TAZ interacts with both Pax8 and TTF-1, in vitro and in vivo. More importantly, we show that this interaction leads to a significant enhancement of the transcriptional activity of Pax8 and TTF-1 on the thyroglobulin promoter thus suggesting a role of TAZ in the control of genes involved in thyroid development and differentiation.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Glândula Tireoide/metabolismo , Fatores de Transcrição/fisiologia , Aciltransferases , Animais , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Hibridização In Situ , Masculino , Camundongos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/genética , Ligação Proteica , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tireoglobulina/genética , Tireoglobulina/metabolismo , Glândula Tireoide/citologia , Glândula Tireoide/embriologia , Fator Nuclear 1 de Tireoide , Transativadores/genética , Transativadores/metabolismo , Transativadores/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Mol Endocrinol ; 41(5): 379-88, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18768662

RESUMO

Pax8 is a transcription factor that plays an important role in the regulation of genes that are exclusively expressed in differentiated thyroid cells. In the thyroid cell environment, evidence exists that Pax8 is part of a multiprotein complex in which its transcriptional activity may be modulated by specific co-factors. In an attempt to identify proteins that interact with Pax8, we performed pull-down experiments challenging the GST-Pax8 fusion protein with protein extracts prepared from the thyroid differentiated cell line PC Cl3. By this approach, we isolated a 113-kDa protein that is able to associate with Pax8, which was further identified by mass fingerprint experiments as poly(ADP-ribose) polymerase 1 (PARP1). To further confirm this interaction, we also showed that PARP1 can be co-immunoprecipitated with Pax8 in vivo from a thyroid cell extract. Gel shifts experiments demonstrated that PARP1 binding to Pax8 significantly inhibits Pax8 binding to DNA. Accordingly, we provide evidence that the functional outcome of such an interaction is a significant downregulation of Pax8 transcriptional activity. In the context of thyroid-specific gene transcription, our results suggest that PARP1 behaves as an important negative co-factor involved in the regulation of Pax8-dependent gene expression.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição Box Pareados/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Genes Reporter , Humanos , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
Mol Cell Biol ; 26(8): 3308-18, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16581802

RESUMO

p63, a p53 family member, is essential for the development of various stratified epithelia and is one of the earliest markers of many ectodermal structures, including the epidermis, oral mucosa, apical ectodermal ridge, and mammary gland. Genetic regulatory mechanisms controlling p63 spatial expression during development have not yet been defined. Using a genomic approach, we identified an evolutionarily conserved cis-regulatory element, located 160 kb downstream of the first p63 exon, which functions as a keratinocyte-specific enhancer and is sufficient to recapitulate expression of the endogenous gene during mouse embryogenesis. Dissection of the p63 enhancer activity revealed a positive autoregulatory loop in which the p63 proteins directly bind to and are essential regulators of the enhancer. Accordingly, transactivating p63 isoforms induce endogenous p63 expression in cells that do not normally express this gene, whereas dominant negative isoforms suppress p63 expression in keratinocytes. In addition the transcription factor AP-2 also binds to the enhancer and cooperates with p63 to induce its activity. These results demonstrate that a long-range autoregulatory loop is involved in the regulation of p63 expression during embryonic development and in adult cells.


Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Sequência Conservada , Ensaio de Desvio de Mobilidade Eletroforética , Fibroblastos/citologia , Fibroblastos/metabolismo , Genes Reporter , Células HeLa , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fator de Transcrição AP-2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , beta-Galactosidase/metabolismo
19.
Mol Endocrinol ; 20(8): 1810-24, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16613988

RESUMO

Among the approaches used to provide a functional inactivation of a target protein, we have chosen the recently described oligomerization chain reaction (OCR) strategy to functionally inactivate the transcription factor Pax8, a member of the Pax gene family expressed in thyroid cells. The OCR strategy is based on the fusion of the self-associating coiled-coil (CC) domain of the nuclear factor promyelocytic leukemia (PML) to target proteins that are able to self-associate naturally or that form heterocomplexes. In the thyroid tissue, the transcription factor Pax8 is involved in the morphogenesis of the gland and in the transcriptional regulation of thyroid-expressed genes. We have recently demonstrated that in thyroid cells Pax8 interacts biochemically and functionally with the transcription factor TTF-1 (thyroid transcription factor 1), and that such interaction leads to the synergistic activation of thyroglobulin (Tg) gene expression. Fusion of the CC domain to Pax8 leads to the formation of aberrant, nonfunctional high-molecular mass complexes to which TTF-1 is also recruited. The CC-Pax8 chimera inhibits the transcriptional activity of Pax8 and of TTF-1 on both synthetic and physiological promoters and prevents the synergistic activation of the Tg promoter mediated by these two transcription factors. Furthermore, the expression of the CC-Pax8 chimera in differentiated thyroid cells leads to the down-regulation of the endogenous expression of several differentiation markers such as Tg, sodium/iodide symporter, Foxe1, TTF-1, and thyroid oxidase 2. These results demonstrate that the OCR is a useful tool to functionally inactivate a transcription factor. Moreover, by this approach, we identified Foxe1, TTF-1, and thyroid oxidase 2 as new direct targets of Pax8 or TTF-1.


Assuntos
Inativação Gênica , Fatores de Transcrição Box Pareados/fisiologia , Polímeros/metabolismo , Fatores de Transcrição/fisiologia , Biomarcadores , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Oxidases Duais , Flavoproteínas/genética , Flavoproteínas/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Células HeLa , Humanos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Especificidade de Órgãos , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Glândula Tireoide/citologia , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Transfecção
20.
Exp Cell Res ; 305(1): 166-78, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15777797

RESUMO

Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds to DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca(2+) interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas Repressoras/fisiologia , Glândula Tireoide/fisiologia , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Northern Blotting , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular , Linhagem Celular , Primers do DNA , Células Epiteliais , Proteínas Interatuantes com Canais de Kv , Mutagênese , Ratos , Valores de Referência , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , TATA Box , Glândula Tireoide/citologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...